

# ENERGY AUDIT REPORT

for

## SWAMI RAMA HIMALAYAN UNIVERSITY

Swami Ram Nagar, Doiwala,  
Dehradun, Uttarakhand

### SESSION 2024-25

Presented & Submitted By



**Ecoscience Consultancy**

An ISO 9001, 14001, 45001, 17020  
& 50001 certified company



**Registered Office:** Lakshmi Vihar Colony,  
Bahadrabad, Haridwar, Uttarakhand, 209402  
**Contact details:** 9045728562, 9041733378  
**Email:** [ecoscience.consultancy@gmail.com](mailto:ecoscience.consultancy@gmail.com)  
**Website:** [www.ecoscienceconsultancy.com](http://www.ecoscienceconsultancy.com)

# ENERGY AUDIT REPORT

of

## SWAMI RAM HIMALAYAN UNIVERSITY

Swami Ram Nagar, Doiwala, Dehradun, 248140, Uttarakhand India.



(Session 2024-25)  
Prepared and Submitted By



**M/s ECOSCIENCE CONSULTANCY**

**An ISO 9001, ISO 14001, ISO 45001, ISO 17020 and ISO 50001 certified Company**  
**Registered Office:** Lakshmi Vihar Colony, Bahadrabad, Haridwar, Uttarakhand, 209402

**Contact details:** 9045728562, 9041733378

**Email:** [ecoscience.consultancy@gmail.com](mailto:ecoscience.consultancy@gmail.com)

**Website:** [www.ecoscienceconsultancy.com](http://www.ecoscienceconsultancy.com)

# ACKNOWLEDGEMENT

---

M/s Ecoscience Consultancy would like to extend its heartfelt gratitude to Swami Rama Himalayan University (SRHU), Doiwala, Dehradun for entrusting us with the responsibility of conducting an 'Energy Audit Study' in academic year 2024-25

We hereby express our sincere thanks to ..... and their team, from Swami Rama Himalayan University for their proactive support and courtesy extended to the M/s Ecoscience Consultancy team during field study. We also thank other officials from Swami Rama Himalayan University for their cooperation and support provided during data collection. We are also grateful to all those we interacted with, during the audit who gave us some operational insights.

Furthermore, we are immensely grateful to all the individuals we interacted with during the audit, as they provided us with valuable operational insights.

We hereby submit the Energy Audit Report for your reference.

# DECLARATION – MANAGEMENT SRHU

---

I, ..... , on behalf of Swami Rama Himalayan University (SRHU), do declare & testify that all the data provided are on factual basis as per the available records and the data has been shared in good faith and is not intended for any other purpose other than Energy audit.

We would like to express our heartfelt gratitude to the team at Ecoscience Consultancy for taking on this important task. We are confident that the upcoming audit will be conducted with the utmost excellence. Thank you for your dedication and expertise!

Sincerely,

**Name:**

**Designation:**

**Swami Rama Himalayan University (SRHU)**

# Declaration by Ecoscience Consultancy

---

Ecoscience Consultancy hereby declare that the energy audit report prepared for the “Swami Rama Himalayan University (SRHU)” located at Swami Ram Nagar, Doiwala, Dehradun, Uttarakhand (India) by our team has been reviewed and approved. The expertise and methodologies used for preparing this audit report are of the highest quality and the experts used their know-how to the optimum level. The recommendations and findings in this report can be considered and implemented where feasible to improve the facility's energy efficiency and sustainability.

We affirm that this report has been prepared in good faith and with the intent of achieving significant energy savings and operational improvements. We are committed to making informed decisions based on the expert analysis provided and to continuously enhancing our energy management practices.



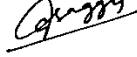
**Dr. Gurpreet Singh**

(Managing Director)

Ecoscience Consultancy



**Dr. Avinash Kumar**


(Managing Director)

Ecoscience Consultancy

# Declaration by Experts/Auditors

We, the undersigned, hereby certify that the energy audit for (SRHU) has been conducted with utmost diligence and professionalism. The data and findings presented in this report are accurate to the best of our knowledge and are based on standard industry practices and methodologies. We further certify that the audit complies with all relevant regulations and standards, and the Recommendations provided are aimed at improving the energy efficiency of the building

## Team of Experts for the Study

| S. No. | Name of Expert                                                   | Area of Expertise                                                                                                                                                                                                        | Sign.                                                                                 |
|--------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1.     | <b>Dr. Gurpreet Singh</b><br>(Ph. D. & M. Tech. Env. Sc.)        | Technical & Environment <ul style="list-style-type: none"><li>• Lead Auditor for Green, Environment audits</li><li>• Air Quality Expert</li><li>• Environment Sustainability</li><li>• Carbon Footprint Expert</li></ul> |  |
| 2.     | <b>Dr. Avinash Kumar</b><br>(Ph.D., M. Tech., M.Sc. in Env. Sc.) | Environment Management System <ul style="list-style-type: none"><li>• Water Quality Expert.</li><li>• Pollution Load Assessor.</li><li>• Carbon Footprint Expert.</li><li>• Environment Audit Expert.</li></ul>          |  |
| 3.     | <b>Mr. Pankaj Dhote</b> (M.Tech in Energy & BE Electrical)       | Energy & Environment <ul style="list-style-type: none"><li>• CEA -Energy Auditor</li><li>• Energy Economist</li></ul>                                                                                                    |  |

## TABLE OF CONTENTS

|           |                                                              |    |
|-----------|--------------------------------------------------------------|----|
| CHAPTER:1 | INTRODUCTION.....                                            | 1  |
| 1.1       | THE PROJECT .....                                            | 1  |
| 1.2       | GENERAL DETAILS.....                                         | 1  |
| 1.3       | DELIVERABLES IN THE DETAIL PROJECT REPORT .....              | 2  |
| 1.4       | METHODOLOGY.....                                             | 2  |
| CHAPTER:2 | ABOUT THE COLLEGE .....                                      | 3  |
| 2.1       | ENERGY CONSERVATION ACTIVITY TAKEN BY THE COLLEGE .....      | 5  |
| CHAPTER:3 | PROJECT DESCRIPTION .....                                    | 7  |
| 3.1       | PROJECT LOCATION.....                                        | 7  |
| 3.2       | METEOROLOGICAL DATA.....                                     | 8  |
| CHAPTER:4 | METHODOLOGY.....                                             | 11 |
| 4.1       | DATA COLLECTION.....                                         | 11 |
| 4.2       | ANALYSIS .....                                               | 11 |
| 4.2.1     | ENERGY EFFICIENCY ASSESSMENT.....                            | 11 |
| 4.3       | ENVIRONMENTAL IMPACT ASSESSMENT .....                        | 12 |
| 4.4       | BENCHMARKING .....                                           | 12 |
| 4.5       | IDENTIFICATION OF ENERGY EFFICIENCY MEASURES (EEMS).....     | 12 |
| 4.6       | IMPLEMENTATION PLAN.....                                     | 12 |
| CHAPTER:5 | BUILDING ENERGY PERFORMANCE.....                             | 13 |
| 5.1       | ENERGY PERFORMANCE INDEX (EPI) .....                         | 13 |
| 5.2       | CALCULATIONS OF EPI.....                                     | 13 |
| CHAPTER:6 | POWER SUPPLY SYSTEM AND ENERGY CONSUMPTION PATTERN ..        | 15 |
| 6.1       | POWER SUPPLY SYSTEM .....                                    | 15 |
| 6.2       | PERFORMANCE ASSESSMENT.....                                  | 17 |
| CHAPTER:7 | ELECTRICAL SYSTEM AND POWER FACTOR .....                     | 25 |
| 7.1       | TRANSFORMER SECTION .....                                    | 25 |
| 7.2       | POWER FACTOR AT MAIN INCOMING OF 3100 KVA AND 1000 KVA ..... | 26 |

|                                                      |                                                                                                    |    |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------|----|
| 7.2.1                                                | RESISTIVE LOADS .....                                                                              | 26 |
| 7.2.2                                                | REACTIVE LOADS .....                                                                               | 27 |
| 7.3                                                  | APFC FOR THE COLLEGE .....                                                                         | 28 |
| 7.4                                                  | POWER FACTOR ACCORDING TO UTTARAKHAND STATE ELECTRICITY REGULATORY COMMISSION (UPCL) .....         | 28 |
| 7.5                                                  | SOLUTION TO THE POWER FACTOR PROBLEM .....                                                         | 29 |
| 7.6                                                  | ENERGY & COST SAVING CALCULATION FOR ECM#1 .....                                                   | 30 |
| 7.7                                                  | DIRECT DEMAND MONITORING & CONTROL SYSTEM .....                                                    | 31 |
| 7.8                                                  | INTEGRATED MANAGEMENT SYSTEM WITH IOT BASED .....                                                  | 32 |
| 7.8.1                                                | OBSERVATION .....                                                                                  | 32 |
| 7.8.2                                                | RECOMMENDATION .....                                                                               | 32 |
| CHAPTER:8 STUDY OF CEILING FANS SYSTEMS .....        |                                                                                                    | 34 |
| 8.1                                                  | CELLING FANS DETAILS .....                                                                         | 34 |
| 8.2                                                  | REPLACE EXISTING CEILING FANS WITH NEW BLDC CEILING FANS ON FAILURE REPLACEMENT BASIS .....        | 34 |
| 8.3                                                  | ENERGY & COSTING CALCULATION FOR ECM#2 .....                                                       | 36 |
| CHAPTER:9 STUDY OF AIR CONDITIONING SYSTEMS .....    |                                                                                                    | 38 |
| 9.1                                                  | AIR CONDITIONING STUDY & PERFORMANCE ANALYSIS .....                                                | 38 |
| 9.2                                                  | REPLACE EXISTING 3 STAR ACS WITH INVERTER TECHNOLOGY 5 STAR ACS ON FAILURE REPLACEMENT BASIS ..... | 38 |
| 9.3                                                  | ENERGY & COST SAVING CALCULATION OF ECM# 3 FOR AIR CONDITIONING.....                               | 39 |
| CHAPTER:10 LIGHTING SYSTEM AND LUX LEVEL STUDY ..... |                                                                                                    | 39 |
| CHAPTER:11 STUDY OF SOLAR SYSTEM.....                |                                                                                                    | 42 |
| 11.1                                                 | EXISTING SYSTEM.....                                                                               | 42 |
| 11.2                                                 | RECOMMENDATION.....                                                                                | 43 |
| CHAPTER:12 SOLAR WATER HEATING SYSTEM .....          |                                                                                                    | 44 |
| 12.1                                                 | EXISTING SYSTEM.....                                                                               | 44 |
| CHAPTER:13 CONCLUSION .....                          |                                                                                                    | 45 |
| 13.1                                                 | CUMULATIVE ENERGY SAVING OPPORTUNITIES .....                                                       | 45 |

|                                                            |    |
|------------------------------------------------------------|----|
| ANNEXURE.....                                              | 46 |
| Annexure-1: AUDIT CERTIFICATE.....                         | 46 |
| Annexure-2: AUDITOR CERTIFICATE AND ISO CERTIFICATES ..... | 47 |
| Annexure-3: ENERGY EFFICIENT EQUIPMENT Suppliers .....     | 53 |
| Annexure-4: RECOMMENDED LUX LEVELS .....                   | 54 |
| Annexure-5: ENERGY MONITORING AND Accounting .....         | 55 |

## **List of Table**

|                                                                                                   |    |
|---------------------------------------------------------------------------------------------------|----|
| Table 1: General Building Details & Energy Consumption .....                                      | 5  |
| Table 2: Total Energy Consumption (April 2024 – March 2025) .....                                 | 6  |
| Table 3: Summary of Energy Saving Opportunities.....                                              | 7  |
| Table 4: General Detail of Swami Rama Himalayan University.....                                   | 1  |
| Table 5: General Building Details & Energy Consumption .....                                      | 4  |
| Table 6: Location details of the project .....                                                    | 7  |
| Table 7: Energy Performance Index .....                                                           | 14 |
| Table 8: Transformers Details .....                                                               | 16 |
| Table 9: DG Specifications.....                                                                   | 17 |
| Table 10: Electrical Connection and Energy Consumption Details of Bill analysis of 3100 kVA ..... | 18 |
| Table 11: Electrical Connection and Energy Consumption Details of Bill Analysis of 1000 kVA ..... | 21 |
| Table 12: General Details & Energy Consumption .....                                              | 23 |
| Table 13: Energy consumption share from Grid, Diesel and PV Panels .....                          | 24 |
| Table 14: Energy in TOE Distribution.....                                                         | 24 |
| Table 15: Transformer Details .....                                                               | 25 |
| Table 16: Details of Capacitors.....                                                              | 28 |
| Table 17: Power Factor Saving Calculation of 3100 kVA Connection.....                             | 30 |
| Table 18: Power Factor Saving Calculation of 1000 kVA Connection.....                             | 31 |
| Table 19: Details of existing Installed Fans in the campus .....                                  | 34 |

|                                                                                           |    |
|-------------------------------------------------------------------------------------------|----|
| Table 20: Energy and Cost Saving Calculation .....                                        | 36 |
| Table 21: Air Conditioning installed at Institute .....                                   | 38 |
| Table 22: Energy and Cost Saving Calculation .....                                        | 39 |
| Table 23: Light Load Details of different Section of College .....                        | 39 |
| Table 24: Summary of Energy Saving Opportunities.....                                     | 45 |
| Table 25: Format for Maintaining a Monthly Record of the Purchased Power Consumption .... | 56 |

## **List of Figure**

|                                                                                            |    |
|--------------------------------------------------------------------------------------------|----|
| Figure 1: Energy Mapping (%) .....                                                         | 7  |
| Figure 2: Monthly representation of the climatic conditions.....                           | 8  |
| Figure 3: Graphical Representation of Solar Radiation & Wind Speed Month Wise .....        | 9  |
| Figure 4: Energy benchmarks for commercial buildings.....                                  | 13 |
| Figure 5: Contract Demand Details of 3100 kVA .....                                        | 19 |
| Figure 6: Monthly power factor Details.....                                                | 19 |
| Figure 7: Energy Consumption Pattern Annually.....                                         | 20 |
| Figure 8: Contract Demand Details of 1000 kVA .....                                        | 22 |
| Figure 9: Annual Power Factor Details of 1000 kVA .....                                    | 22 |
| Figure 10: Energy Consumption pattern yearly of 1000 kVA.....                              | 23 |
| Figure 11: Energy Mapping (%) .....                                                        | 24 |
| Figure 12: Power Factor Waveform .....                                                     | 26 |
| Figure 13: New Technology Energy Efficient BLDC Fans.....                                  | 34 |
| Figure 14: RPM Vs Power Consumption of Fans .....                                          | 35 |
| Figure 15: Rated specifications of various sizes are given below for ready reference:..... | 36 |
| Figure 16: Technical specifications of solar water boiler.....                             | 44 |

# Executive Summary

---

Energy Audit is the key to a systematic approach for decision-making in the area of energy management as it attempts to evaluate the energy usage pattern in an establishment. Also, it serves to identify all the energy streams in an establishment, so that potential areas wherein energy savings are practically feasible are identified.

In light of this goal, M/s Ecoscience Consultancy was entrusted by Swami Rama Himalayan University with the responsibility of conducting an energy audit for the institution.

## **The study primarily encompasses the following key areas:**

- Present energy scenario of the building.
- Detailed analysis of the data collected during field visits, trial measurements using portable instruments, and discussions with relevant personnel.
- Majorly area covered during the detailed study i.e Lighting (Interior/Exterior), AC, Heaters, Fans, electric motors, electronic equipment's, laboratories and computer networking
- Recommendations for energy-saving options in all feasible areas, accompanied by cost-benefit analysis.

## **General Building Details & Energy Consumption**

*Table 1: General Building Details & Energy Consumption*

| Sr. No. | Particulars                                                                                     | Value        |
|---------|-------------------------------------------------------------------------------------------------|--------------|
| 1       | Contract Demand (kVA)                                                                           |              |
| 1.1     | Connection-1                                                                                    | 3100 kVA     |
| 1.2     | Connection-2                                                                                    | 1000 kVA     |
| 2       | Installed Solar Capacity                                                                        | 2.5 MW       |
| 3       | Electricity Consumption, UTTARAKHAND POWER CORPORATION LIMITED (kWh)<br>-Apr-2024 to March-2025 |              |
| 3.1     | Connection-1 (3100 kVA)                                                                         | 10933254 kWh |
| 3.2     | Connection-2 (1000 kVA)                                                                         | 1944780 kWh  |

| Sr. No. | Particulars                                   | Value                                               |
|---------|-----------------------------------------------|-----------------------------------------------------|
| 3.3     | Solar 2.5 MWh @ 300 Days and 3.8 kWh/kW/day   | 2850000 kWh                                         |
| 4       | Annual average Cost of Electricity per unit - |                                                     |
|         | Connection-1 (3100 kVA)                       | Rs 5.54/kWh                                         |
|         | Connection-2 (1000 kVA)                       | Rs 7.27/kWh                                         |
|         | Average Unit Cost of Electricity              | Rs 6.30 /kWh                                        |
| 5       | Working hours                                 | General Lighting (6 to 7 hrs./day, 245 days a year) |
|         |                                               | Air Conditioning (7 hrs./day, 150 days a year)      |
|         |                                               | Fans (7 hrs./day, 210 days a year)                  |
| 5       | Lighting Load in kW                           | 219 kW                                              |
| 6       | Fans Load in kW                               | 62.5 kW                                             |
| 7       | Air conditioning Load in kW                   | 550-600 kW                                          |

### Total Energy Consumed in TOE per annum

Period April 2024 to March 2025

*Table 2: Total Energy Consumption (April 2024 – March 2025)*

| Annual Energy Share   |                            |                               |             |
|-----------------------|----------------------------|-------------------------------|-------------|
| Particulars           | Value of Energy            | ToE (Tonne of Oil Equivalent) | Percentage  |
| Electricity from Grid | 10933254 kWh + 1944780 kWh | 940.25 +167.25                | 75%         |
| Diesel in Ltr         | 137414                     | 120.9                         | 8%          |
| Solar                 | 2850000 kWh                | 245.1                         | 17%         |
| <b>Total</b>          |                            | <b>1473.5</b>                 | <b>100%</b> |

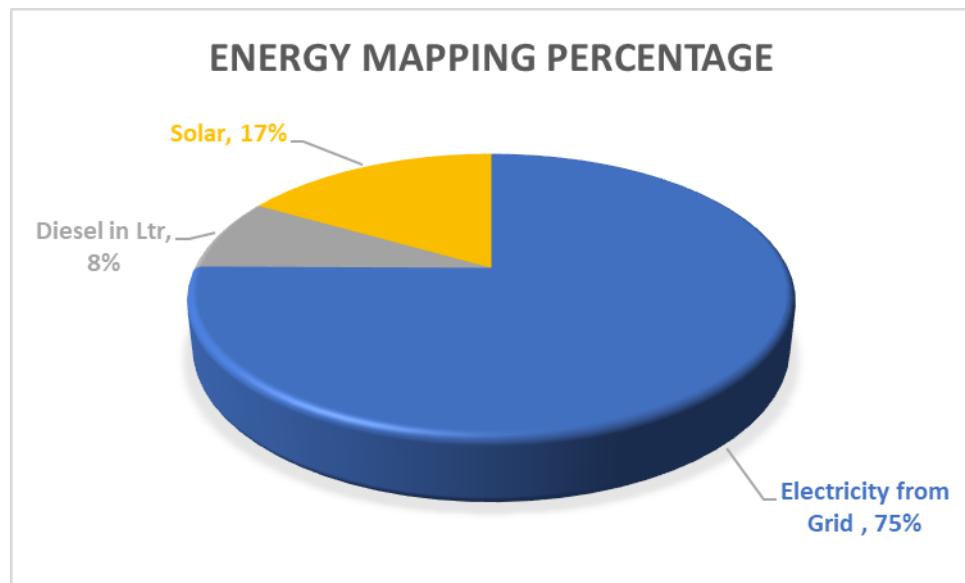



Figure 1: Energy Mapping (%)

### Cumulative Energy Saving Opportunities

Table 3: Summary of Energy Saving Opportunities

| Particulars                                                                                  | Annual Savings |     |     |                   | Estimated Investment<br>(Rs in Lakh) |
|----------------------------------------------------------------------------------------------|----------------|-----|-----|-------------------|--------------------------------------|
|                                                                                              | kWh            | TOE | CO2 | Saving Rs in Lakh |                                      |
| Improve the Power Factor in the system in 3100 kVA                                           |                |     |     | 46.50             | 12.90                                |
| Improve the Power Factor in the system in 1000 kVA                                           |                |     |     | 2.00              | 1.00                                 |
| Replace Existing Ceiling Fans with low wattage Ceiling Fans on Failure Replacement Basis     | 117600         |     |     | 7.40              | 61.50                                |
| Replace Existing 3 Star ACs with Inverter Technology 5 Star ACs on Failure Replacement Basis | 49219          |     |     | 3.10              | 8.500                                |
| <b>Total</b>                                                                                 | <b>166819</b>  |     |     | <b>59.00</b>      | <b>83.90</b>                         |
| <b>Observations</b>                                                                          |                |     |     |                   |                                      |
| Monitoring of Solar PV System                                                                |                |     |     |                   |                                      |

**Note: The Return on Investment (ROI) for Energy Conservation Measures (ECM) is high, attributed to reduced operating hours and higher initial costs. Therefore, we recommend implementing of ECMs in a phased Manner approach or as failure replacements Policy to get benefits.**

**Net Saving:**

**Energy Saving: 166819 kWh per annum**

**Cost Saving: 59.00 Lakhs per annum**

**Investment: 83.90 Lakhs**

## CHAPTER:1 INTRODUCTION

### 1.1 THE PROJECT

"According to the Energy Conservation Act of 2001, an Energy Audit encompasses the verification, monitoring, and analysis of energy usage. This process includes the submission of a technical report that provides recommendations for enhancing energy efficiency, complete with a cost-benefit analysis and an action plan to reduce energy consumption.

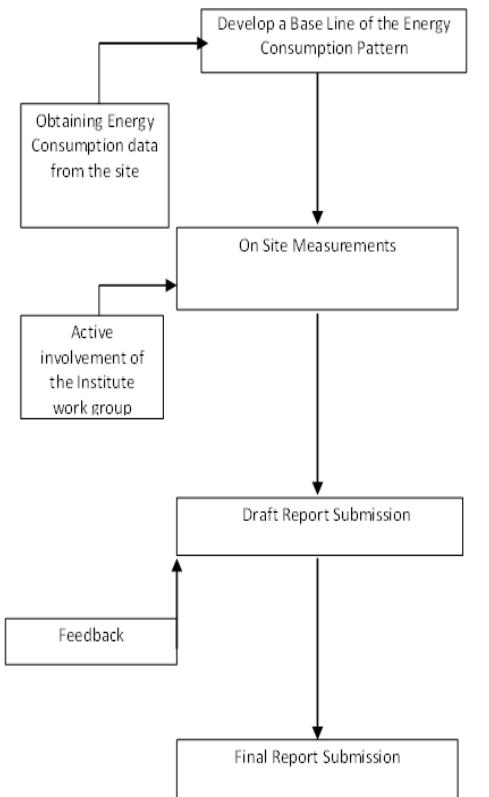
Energy Audits play a pivotal role in adopting a systematic approach to energy management. They aim to assess the energy consumption patterns within an establishment and identify all energy streams. This, in turn, helps in identifying practical areas for energy savings.

With these objectives in mind, M/s Ecoscience Consultancy was entrusted with the task of conducting an energy audit for Swami Rama Himalayan University, to enhance their energy efficiency.

### 1.2 GENERAL DETAILS

*Table 4: General Detail of Swami Rama Himalayan University*

| Particulars                                                                                              |   | Details                                                                                                                                                                                  |                                                                       |
|----------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Name & Address of Institute                                                                              | : | Swami Rama Himalayan University                                                                                                                                                          |                                                                       |
| Contact Person                                                                                           | : |                                                                                                                                                                                          |                                                                       |
| Contact Number                                                                                           | : |                                                                                                                                                                                          |                                                                       |
| Contact Email                                                                                            | : |                                                                                                                                                                                          |                                                                       |
| Annual Purchased Power Consumption of Swami Rama Himalayan University<br>(Period: April 2024 - Mar 2025) | : | 10933254 kWh + 1944780 kWh<br>(2850000 kWp Solar unit Generation)                                                                                                                        |                                                                       |
| Basic Purchased Power Rate                                                                               | : | Units Consumption<br>1. 10933254 -3100 kVA<br>2. 1944780- 1000 kVA<br>3. 2850000-2500 kWp<br>4. 440962- DG Set                                                                           | Unit rate in Rs/kWh<br>Rs 6.3/kWh<br>Including Electricity and DG Set |
| Energy Performance Index                                                                                 | : | <b>Climate Zone -Composite</b><br><b>Operating 245 Days/ 10 hours</b><br><b>Annual Unit Consumption /Area</b><br><b>1,61,68,996 kWh and 2,44,820 Sq. M</b><br><b>EPI is 66 kWh/Sq. M</b> |                                                                       |


### 1.3 DELIVERABLES IN THE DETAIL PROJECT REPORT

- ◆ Methodology adopted for the study
- ◆ Present energy scenario of the building
- ◆ Detailed analysis of the data obtained through field visits, trial measurements by portable gadgets, discussions with concerned personnel etc.
- ◆ Recommendations for energy savings options in all possible areas with cost benefit analysis.
- ◆ Technical specifications for any retrofit options

### 1.4 METHODOLOGY

Methodology adopted for achieving the desired objectives viz: Assessment of the Current operational status and Energy savings include the following:

- Discussions with the concerned officials for identification of major **areas of focus** and other related systems.
- A team of engineers visited the Institute premises and had discussions with the concerned officials/ supervisors to collect data/ information on the operations and energy distribution in the building. The data was analyzed to arrive at a **base line energy consumption pattern**.
- **Measurements and monitoring** with the help of appropriate instruments including continuous and/ or time-lapse recording, as appropriate and visual observations were made to identify the energy usage pattern and losses in the system.
- Computation and **in-depth analysis** of the collected data, including utilization of computerized analysis and other techniques as appropriate were done to draw inferences and to evolve suitable energy conservation plan/s for improvements/ reduction in specific energy consumption.
- Draft Report submission on the findings of the audit.



**Final report submission after incorporating the observations/ comments made by the Institute.**

## **CHAPTER:2 ABOUT THE COLLEGE**

---

SRHU, with its 25+ years of legacy, has established itself as one of the leading higher education institutes in the region. The institution is focused on providing affordable, high-quality education and ensuring academic excellence for its students. In addition to its academic offerings, it has established partnerships with over 50 international universities and colleges. These partnerships provide students with the opportunity to participate in exchange programs and gain exposure to global perspectives and experiences. The college also collaborates with leading organizations in various industries to provide students with practical training and an inside look into the real-world operations of these organizations. Overall, SRHU, Uttarakhand is committed to equipping students with the knowledge, skills, and experiences necessary for successful career development and personal growth.

- SRHU, Uniqueness •
- First to introduce Ph.D. program in medical sciences in Uttarakhand •
- First Private University in India to launch EDP-Homestay Program for the village youth.
- First in the state to offer Health / Actuarial Sciences specialization in M.Sc. Statistics.
  - First in the State and Largest in Northern India 1200 bed super-specialty Post Graduate Teaching Hospital.
  - First and only NABH accredited hospital in Uttarakhand.
  - First and only Private Hospital in India to receive Ayushman Gold Certificate for providing quality services to patients under the scheme
  - First and only Cadaver Lab in the state.
- First and only Comprehensive Cardiac Care Centre in the state.
  - First to introduce Bone Marrow Transplant Program in Uttarakhand.
  - Instill a sense of pride and belongingness in students and alumni towards the institution.
  - To create facilities& ambience for advance level of pharmaceutical teaching & practical skills.
- To constantly strive for research, development & innovation in pharmaceutical sciences, thereby providing the faculty & students the right platform to showcase their talents & achieve laurels.
- To collaborate with industry, academia & healthcare organizations that ensures the best placement opportunities, promote entrepreneurial development activities & also provide international exposure.
- To make students socially vibrant &committed pharmaceutical professionals.

Table 5: General Building Details &amp; Energy Consumption

| Sr. No. | Particulars                                                                                  | Value                                               |
|---------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1       | Contract Demand (kVA)                                                                        |                                                     |
| 1.1     | Connection-1                                                                                 | 3100 kVA                                            |
| 1.2     | Connection-2                                                                                 | 1000 kVA                                            |
| 2       | Installed Solar Capacity                                                                     | 2.5 MW                                              |
| 3       | Electricity Consumption, UTTARAKHAND POWER CORPORATION LIMITED (kWh) –Apr-2024 to March-2025 |                                                     |
| 3.1     | Connection-1 (3100 kVA)                                                                      | 10933254 kWh                                        |
| 3.2     | Connection-2 (1000 kVA)                                                                      | 1944780 kWh                                         |
| 3.3     | Solar 2.5 MWh @ 300 Days and 3.8 kWh/kW/day                                                  | 2850000 kWh                                         |
| 4       | Annual average Cost of Electricity per unit -                                                |                                                     |
|         | Connection-1 (3100 kVA)                                                                      | Rs 5.54/kWh                                         |
|         | Connection-2 (1000 kVA)                                                                      | Rs 7.27/kWh                                         |
|         | Average Unit Cost of Electricity                                                             | Rs 6.30 /kWh                                        |
| 5       | Working hours                                                                                | General Lighting (6 to 7 hrs./day, 245 days a year) |
|         |                                                                                              | Air Conditioning (7 hrs./day, 150 days a year)      |
|         |                                                                                              | Fans (7 hrs./day, 210 days a year)                  |
| 5       | Lighting Load in kW                                                                          | 219 kW                                              |
| 6       | Fans Load in kW                                                                              | 62.5 kW                                             |
| 7       | Air conditioning Load in kW                                                                  | 550-600 kW                                          |

## 2.1 ENERGY CONSERVATION ACTIVITY TAKEN BY THE COLLEGE

- 2500 kWp Solar PV system installed at rooftop

*Picture: 1: Solar Panels Installed at Rooftop*



- Solar street lights are installed in Street of University Campus
- LED type Lighting Lamps is installed inside the campus and blocks & BLDC Fans are installed for Energy saving

*Picture: 2: LED Lighting Lamp*

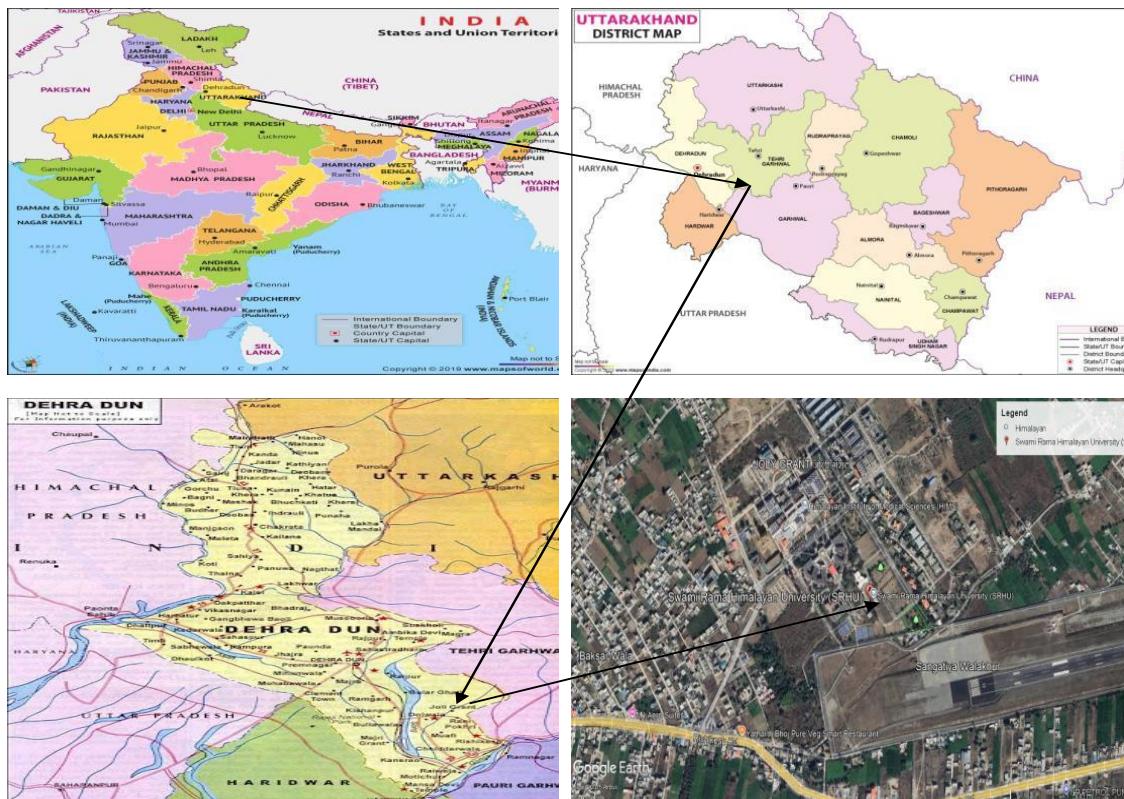


- Motion sensor are installed in different area for energy saving

*Picture: 3:Motion Sensor for Lights*



## CHAPTER:3 PROJECT DESCRIPTION


### 3.1 PROJECT LOCATION

Swami Rama Himalayan University (SRHU), Uttarakhand, is a prominent educational institution situated in the city of Uttarakhand. The campus is strategically located in a region that experiences a typical Hill area climate characterized by hot summers, winters, and moderate monsoon seasons. The facility spans a substantial ground-covered area and is well-equipped with modern infrastructure to support its diverse academic programs and extracurricular activities.

*Table 6: Location details of the project*

| S. No. | Particulars | Details                                   |
|--------|-------------|-------------------------------------------|
| a)     | Location    | Swami Rama Nagar, Doiwala                 |
| b)     | District    | Dehradun                                  |
| c)     | State       | Uttarakhand                               |
| d)     | Coordinates | Lat.: 30°11'26.98"N; Long.: 78°10'03.03"E |
| e)     | Elevation   | 554 m amsl                                |

*Picture: 4:Location of the project*



## 3.2 METEOROLOGICAL DATA

The climate data for SRHU, Uttarakhand, provides insights into the solar radiation and wind speed experienced throughout the year. This information is crucial for optimizing the energy efficiency and sustainability measures implemented on the campus.

### Climate Details

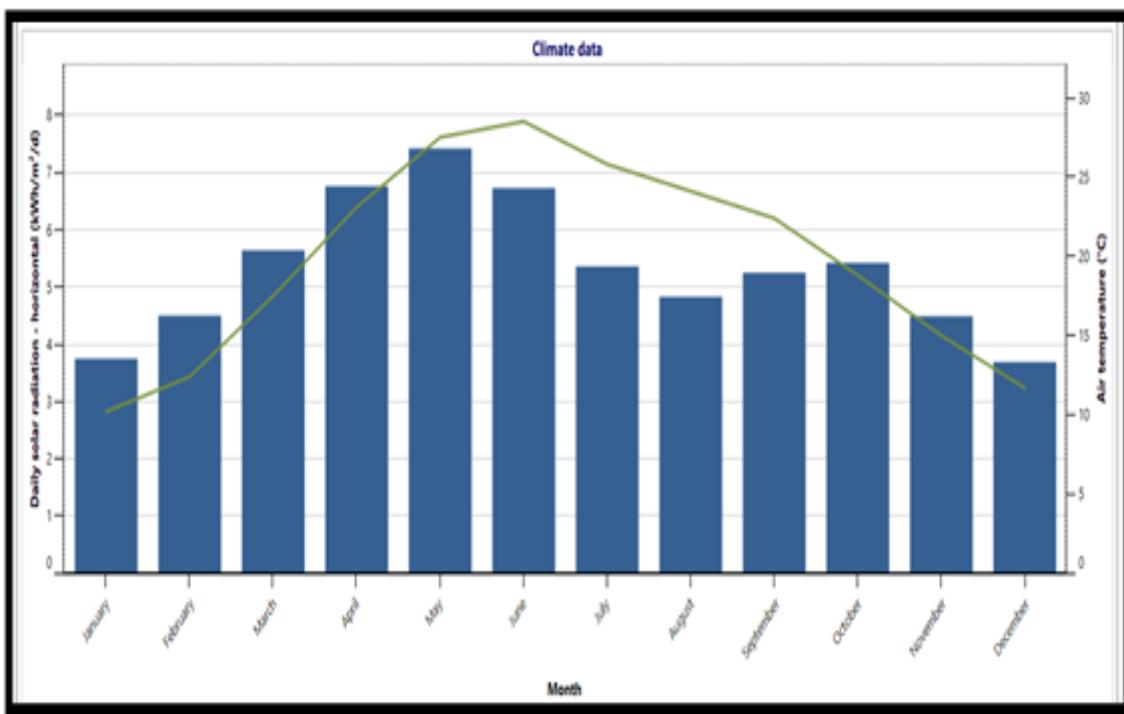
The region experiences:

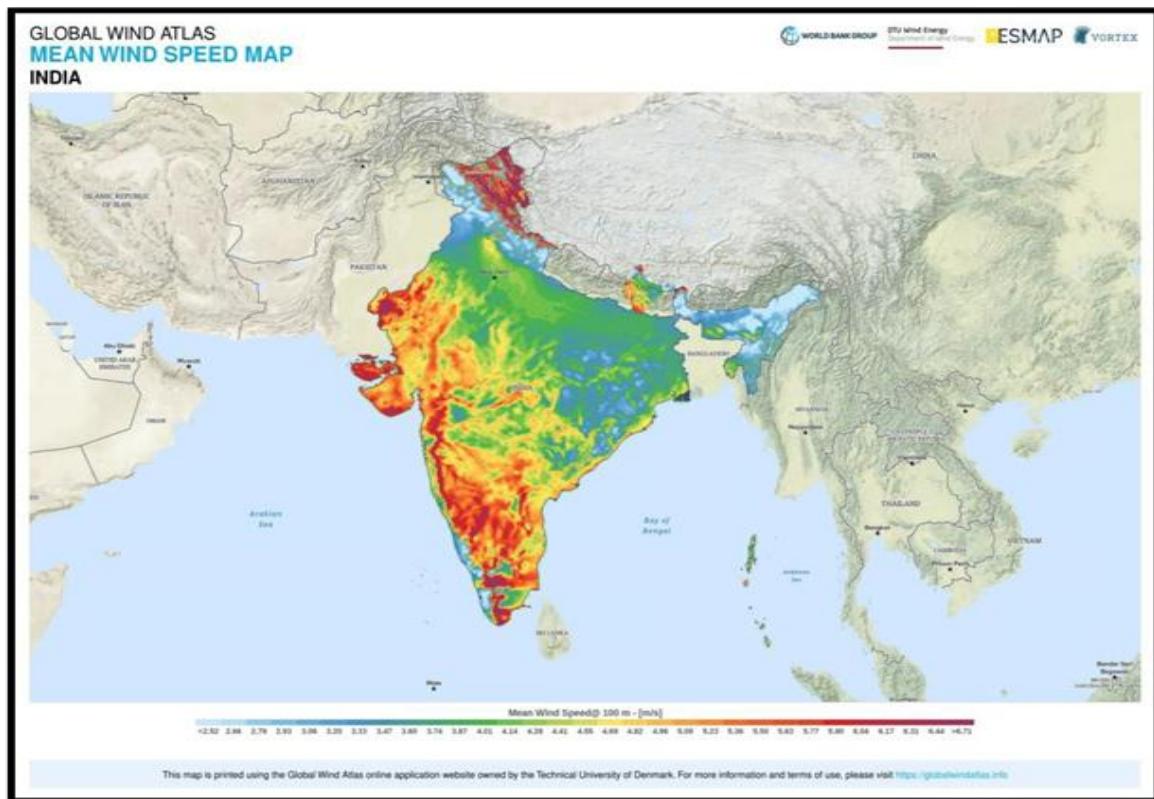
- Summers: Moderate hot & humidity, with temperatures often exceeding 29.6°C.
- Winters: Mild and pleasant, with temperatures ranging between 7.7°C to 16°C.
- Monsoon: Moderate rainfall, primarily occurring from July to September

|                             | Unit | Climate data location |  | Facility location |  | Source     |
|-----------------------------|------|-----------------------|--|-------------------|--|------------|
| Latitude                    |      | 30.3                  |  | 30.2              |  |            |
| Longitude                   |      | 78.1                  |  | 78.2              |  |            |
| Climate zone                |      | 2A - Hot - Humid      |  |                   |  | NASA       |
| Elevation                   | m    | 1131                  |  | 537               |  | NASA - Map |
| Heating design temperature  | °C   | -3.1                  |  |                   |  | NASA       |
| Cooling design temperature  | °C   | 21.8                  |  |                   |  | NASA       |
| Earth temperature amplitude | °C   | 19.6                  |  |                   |  | NASA       |

| Month       | Daily solar radiation - horizontal |                   |               |      |                       |      |      |      | Atmospheric pressure | Wind speed | Earth temperature | Heating degree-days | Cooling degree-days |
|-------------|------------------------------------|-------------------|---------------|------|-----------------------|------|------|------|----------------------|------------|-------------------|---------------------|---------------------|
|             | Air temperature                    | Relative humidity | Precipitation | mm   | KWh/m <sup>2</sup> /d | kPa  | m/s  | °C   | 18 °C                | °C-d       | 10 °C             | °C-d                |                     |
| January     | 10.2                               | 42.8%             | 25.11         | 3.75 | 89.2                  | 2.1  | 7.7  |      | 242                  |            | 6                 |                     |                     |
| February    | 12.4                               | 42.5%             | 36.40         | 4.50 | 89.0                  | 2.5  | 10.8 |      | 157                  |            | 67                |                     |                     |
| March       | 17.5                               | 34.9%             | 23.56         | 5.64 | 88.9                  | 2.8  | 16.6 |      | 16                   |            | 233               |                     |                     |
| April       | 23.1                               | 26.8%             | 20.40         | 6.76 | 88.7                  | 3.1  | 23.1 |      | 0                    |            | 393               |                     |                     |
| May         | 27.5                               | 24.8%             | 36.58         | 7.42 | 88.4                  | 3.3  | 28.3 |      | 0                    |            | 543               |                     |                     |
| June        | 28.5                               | 40.5%             | 138.30        | 6.73 | 88.1                  | 2.9  | 29.6 |      | 0                    |            | 555               |                     |                     |
| July        | 25.8                               | 71.5%             | 317.44        | 5.36 | 88.1                  | 2.3  | 26.4 |      | 0                    |            | 490               |                     |                     |
| August      | 24.1                               | 81.5%             | 332.32        | 4.83 | 88.2                  | 2.0  | 24.2 |      | 0                    |            | 437               |                     |                     |
| September   | 22.4                               | 75.9%             | 170.40        | 5.25 | 88.6                  | 1.9  | 21.9 |      | 0                    |            | 372               |                     |                     |
| October     | 18.8                               | 56.5%             | 21.70         | 5.42 | 89.0                  | 2.1  | 17.1 |      | 0                    |            | 273               |                     |                     |
| November    | 15.0                               | 44.4%             | 4.50          | 4.49 | 89.2                  | 2.0  | 12.2 |      | 90                   |            | 150               |                     |                     |
| December    | 11.7                               | 41.2%             | 9.92          | 3.69 | 89.2                  | 2.0  | 8.6  |      | 195                  |            | 53                |                     |                     |
| Annual      | 19.8                               | 48.7%             | 1,136.63      | 5.32 | 88.7                  | 2.4  | 18.9 |      | 699                  |            | 3,571             |                     |                     |
| Source      | NASA                               | NASA              | NASA          | NASA | NASA                  | NASA | NASA | NASA | NASA                 |            | NASA              |                     |                     |
| Measured at |                                    |                   |               |      | m                     | 10   | 0    |      |                      |            |                   |                     |                     |

Figure 2: Monthly representation of the climatic conditions





Figure 3: Graphical Representation of Solar Radiation & Wind Speed Month Wise

## Wind Energy

Operating a wind power plant involves more than just installing turbines; it requires careful planning and analysis of wind patterns. Ideal locations for wind turbines typically have an annual average wind speed of at least 9 mph (4 m/s) for small turbines and 13 mph (5.8 m/s) for utility-scale turbines. Unfortunately, the wind speed in the region is below 2 m/s, making it unsuitable for wind energy generation. The following Fig 2.4 shows the wind speed data in various states of India.

In Uttarakhand, the wind energy potential is low due to these inadequate wind speeds, which is why detailed studies on wind energy have not been included in the audit report. However, solar energy remains a promising and effective renewable energy option for the campus, offering a viable alternative in the region.

*Picture 1: wind speed data in various states of India*



## **CHAPTER:4 METHODOLOGY**

This section outlines the methodology used to conduct the energy audit at Swami Rama Himalayan University (SRHU), Uttarakhand. The methodology includes systematic data collection, analysis, and identification of energy efficiency measures aimed at reducing energy consumption and enhancing sustainability on the campus.

### **4.1 DATA COLLECTION**

A team of engineers/Experts visited the SRHU campus to conduct thorough on-site inspections. These inspections focused on evaluating the current state of energy consumption and environmental practices across various facilities, including classrooms, laboratories, administrative buildings, hostels, and common areas. The inspections involved visual observations, measurements, and discussions with the concerned officials and supervisors to gather detailed information on operations and load distribution.

#### **Energy Consumption Data:**

Data on historical and current energy consumption was collected through:

- Electricity Bills: Analysis of electricity bills from the Uttarakhand Electricity Board to establish a baseline of energy usage.
- Generator Usage: Monitoring the performance and fuel consumption of diesel generators (DG sets) on campus.
- Renewable Energy Contributions: Evaluating the contribution of solar energy installations in meeting the campus's energy demands.

### **4.2 ANALYSIS**

#### **4.2.1 ENERGY EFFICIENCY ASSESSMENT**

The efficiency of existing energy systems was evaluated, including:

- Lighting Systems: Assessment of lighting fixtures and identification of energy-saving opportunities through retrofitting with LED lights.
- AC Systems: Evaluation of heating, ventilation, and air conditioning systems for potential improvements.

- Electrical Equipment: Analysis of the performance of electrical equipment and identification of inefficiencies.

### **4.3 ENVIRONMENTAL IMPACT ASSESSMENT**

The environmental impact of current practices was analyzed, focusing on:

- Carbon Footprint: Estimation of the carbon footprint of the campus.
- Resource Utilization: Evaluation of resource utilization and potential areas for improvement in sustainability practices.

### **4.4 BENCHMARKING**

SRHU's energy and environmental performance were compared against industry standards and best practices. This involved:

- Performance Metrics: Establishing performance metrics and identifying gaps.
- Opportunities for Improvement: Highlighting areas with significant potential for energy savings and environmental impact reduction.

### **4.5 IDENTIFICATION OF ENERGY EFFICIENCY MEASURES (EEMS)**

Potential energy efficiency measures were identified based on the data collected and analyzed. These measures focus on improving the efficiency of lighting systems, HVAC systems, and other electrical equipment, as well as enhancing waste management and water conservation practices.

### **4.6 IMPLEMENTATION PLAN**

An actionable implementation plan was developed, detailing the steps required to implement the recommended energy efficiency measures. The plan includes timelines, responsible parties, and estimated costs for each measure.

## CHAPTER:5 BUILDING ENERGY PERFORMANCE

### 5.1 ENERGY PERFORMANCE INDEX (EPI)

The Energy Performance Index (EPI) is a key metric used to evaluate the energy efficiency of a campus. It represents the total energy consumed over a year divided by the total built-up area, measured in kWh/sqm/year. This index provides a straightforward and relevant indicator of whether a campus is energy efficient. For educational institutes like SRHU, benchmarking the EPI helps in comparing the energy performance against established standards and identifying areas for improvement.

The benchmarking for EPI is presented in figure which illustrates the energy benchmarks for commercial buildings. This comparison allows SRHU to assess its energy efficiency relative to similar institutions and set targets for energy conservation.

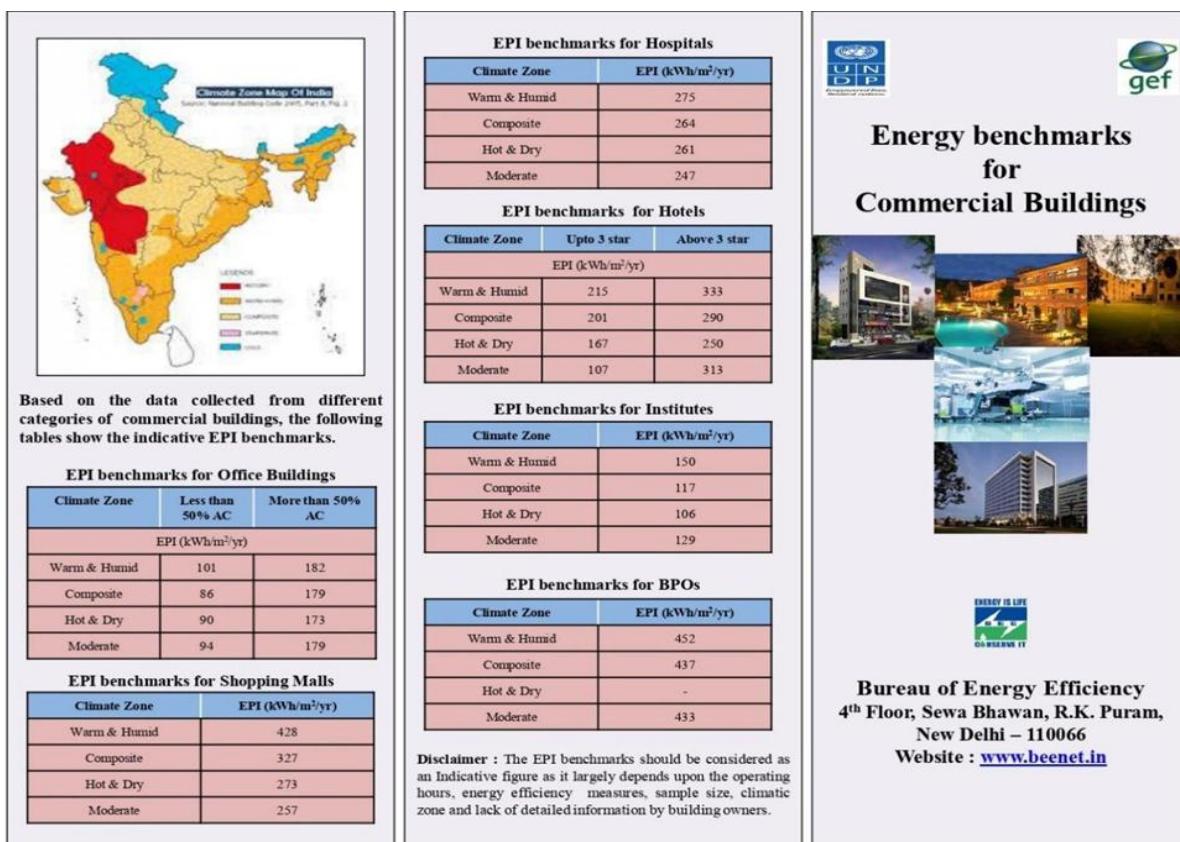



Figure 4: Energy benchmarks for commercial buildings

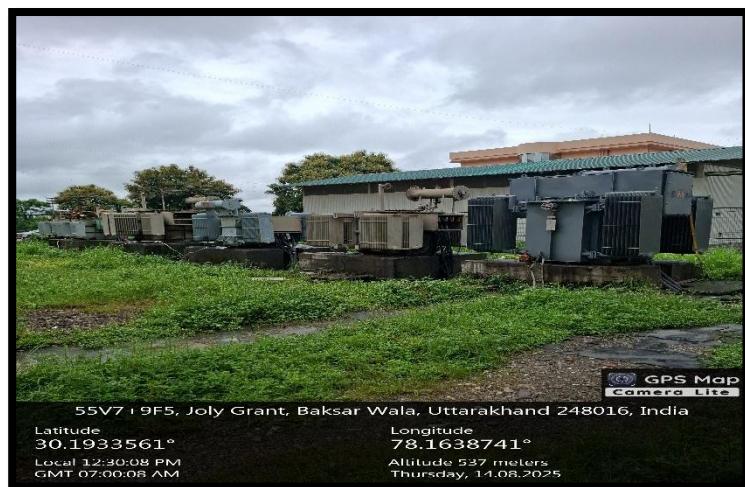
### 5.2 CALCULATIONS OF EPI

To understand the energy performance of SRHU, we calculate the Energy Performance Index (EPI) based on the annual energy consumption and the total built-up area of the campus.

According to figure, the required EPI for an educational institution is 150 kWh/sq m/year. The calculations for SRHU's EPI for the year 2024-25 are as follows:

*Table 7: Energy Performance Index*

| Energy performance Index                      | Values                           |
|-----------------------------------------------|----------------------------------|
| Annual energy consumption during year 2024-25 | = 1,61,68,996 kWh                |
| Total build up area of the campus             | = 2,44,820 sqm                   |
| EPI                                           | = 1,61,68,996 kWh / 2,44,820 sqm |
| EPI                                           | = 66 kWh/sqm/year                |


The calculated EPI for SRHU is 66 kWh/sq m/year, which is within the desired limit of 150 kWh/sq m/year. This indicates that the institution is operating within an acceptable range of energy efficiency for its climate zone, which is classified as composite. Maintaining or further improving this EPI will help SRHU in achieving its sustainability goals.

## **CHAPTER:6 POWER SUPPLY SYSTEM AND ENERGY CONSUMPTION PATTERN**

### **6.1 POWER SUPPLY SYSTEM**

The campus currently sources power from **UPCL** at 11 kV with two connections of 3100 kVA and 1000 kVA, which was stepped down to 433 V through **18 transformers** of various capacities (4 MVA, 2000 kVA, 1250 kVA, 750 kVA, 500 kVA, 315 kVA, 250 kVA, and 200 kVA). Metering is carried out at the 11-kV level.

*Picture 2: Transformer Area*



In addition to grid supply, backup power is provided by **nine 500 kVA DG sets with AMF panels**.

*Picture 3: Diesel Generator*



A **2.5 MW rooftop solar power plant** is also installed, though it operates without battery storage; hence, **grid connection is required at night** and during low solar generation. On average, a **1 kW SPV system generates about 4–5 kWh/day**. The available rooftop area across hostels, the auditorium, and other buildings offers further scope for solar expansion.

Because SPV output varies with time of day, **any shortfall is automatically met by the grid**, ensuring uninterrupted power supply



Table 8: Transformers Details

| S. No | Location              | Equipment                       | Qty |
|-------|-----------------------|---------------------------------|-----|
| 1     | 33 kV Sub-station     | 4 MVA Transformer               | 2   |
|       |                       | 33 kV Breaker                   | 1   |
| 2     | DG House (Hospital)   | 500 kVA DG sets with AMF panels | 9   |
| 3     | Hospital Sub-station  | 750 kVA Transformer             | 3   |
|       |                       | 1250 kVA Transformer            | 2   |
|       |                       | 2000 kVA Transformer            | 1   |
|       |                       | 11 kV Breaker                   | 1   |
|       |                       | LT Electrical Panel Room        | 1   |
| 4     | Residence Sub-station | 11 kV Breaker                   | 2   |
|       |                       | 500 kVA Transformer             | 1   |
|       |                       | 250 kVA Transformer             | 2   |
|       |                       | 200 kVA Transformer             | 1   |
|       |                       | 750 kVA Transformer             | 1   |
| 5     | Medical College S/S   | 500 kVA Transformer             | 1   |
|       |                       | LT Panels                       | 2   |
|       |                       | 315 kVA Transformer             | 1   |
|       |                       | 11 kV Oil Circuit Breaker       | 1   |
| 6     | Tube well             | 250 kVA Transformer             | 1   |
| 7     | MBBS Hostel           | 750 kVA Transformer             | 1   |
|       |                       | 315 kVA Transformer             | 1   |
| 8     | Hospital & CRI        | Lifts                           | 18  |

The University Facility have Nine DG set of rating given below in table:

*Table 9: DG Specifications*

| Particulars     | DG No -1 To 9 |
|-----------------|---------------|
| Rating in kVA   | 500           |
| Nos             | 9             |
| Current in Amp  | NA            |
| Voltage in Volt | 415           |
| Frequency       | 50 Hz         |

## 6.2 PERFORMANCE ASSESSMENT

The performance assessment of transformer was conducted during the study. Power Factor (PF) of the facility is analyzed from last one-year electricity bills and also by electrical measurement on transformers. The demand and power factor of the facility studied at transformer are presented below.

Table 10: Electrical Connection and Energy Consumption Details of Bill analysis of 3100 kVA

| Month-year               | Contractual load in kVA | Billable Demand in kVA | MDI in kVA  | Energy Consumption in kVAh | Energy Consumption in kWh | Power factor | Demand Charges in Rs | Energy charges in Rs | Total pay amount in Rs | Unit rate in Rs |
|--------------------------|-------------------------|------------------------|-------------|----------------------------|---------------------------|--------------|----------------------|----------------------|------------------------|-----------------|
| Apr-24                   | 3100                    | 2325                   | 2532.0      | 927480                     | 871380                    | 0.940        | 310000               | 5101140              | 3636457                | 3.9             |
| May-24                   | 3100                    | 2325                   | 3234.0      | 1304280                    | 1227720                   | 0.941        | 310000               | 7173540              | 7730707                | 5.9             |
| Jun-24                   | 3100                    | 2325                   | 3492.0      | 1380420                    | 1262220                   | 0.914        | 310000               | 7592310              | 8718552                | 6.3             |
| Jul-24                   | 3100                    | 2325                   | 3306.0      | 1445520                    | 1341960                   | 0.928        | 310000               | 7950360              | 7960560                | 5.5             |
| Aug-24                   | 3100                    | 2325                   | 3150.0      | 1348680                    | 1224900                   | 0.908        | 310000               | 7417740              | 7076832                | 5.2             |
| Sep-24                   | 3100                    | 2325                   | 3018.0      | 987032                     | 907614                    | 0.920        | 310000               | 6920760              | 7243269                | 7.3             |
| Oct-24                   | 3100                    | 2325                   | 2814.0      | 979260                     | 849120                    | 0.867        | 310000               | 5385930              | 4970540                | 5.1             |
| Nov-24                   | 3100                    | 2325                   | 1918.0      | 731760                     | 663540                    | 0.907        | 310000               | 4024680              | 3664780                | 5.0             |
| Dec-24                   | 3100                    | 2325                   | 1990.0      | 756600                     | 734400                    | 0.971        | 310000               | 4160970              | 3842024                | 5.1             |
| Jan-25                   | 3100                    | 2325                   | 1807.0      | 770160                     | 759660                    | 0.986        | 310000               | 4235550              | 4733260                | 6.1             |
| Feb-25                   | 3100                    | 2325                   | 1594.0      | 552240                     | 540660                    | 0.979        | 310000               | 3031050              | 3538638                | 6.4             |
| Mar-25                   | 3100                    | 2325                   | 1648.0      | 597300                     | 550080                    | 0.933        | 310000               | 3266340              | 2662329                | 4.5             |
| <b>12 Months Total</b>   |                         |                        |             | <b>11780732</b>            | <b>10933254</b>           |              | <b>3720000</b>       | <b>66260370</b>      | <b>65777948</b>        |                 |
| <b>12 Months Average</b> |                         |                        | <b>2543</b> |                            |                           | <b>0.932</b> |                      |                      |                        | <b>5.68</b>     |

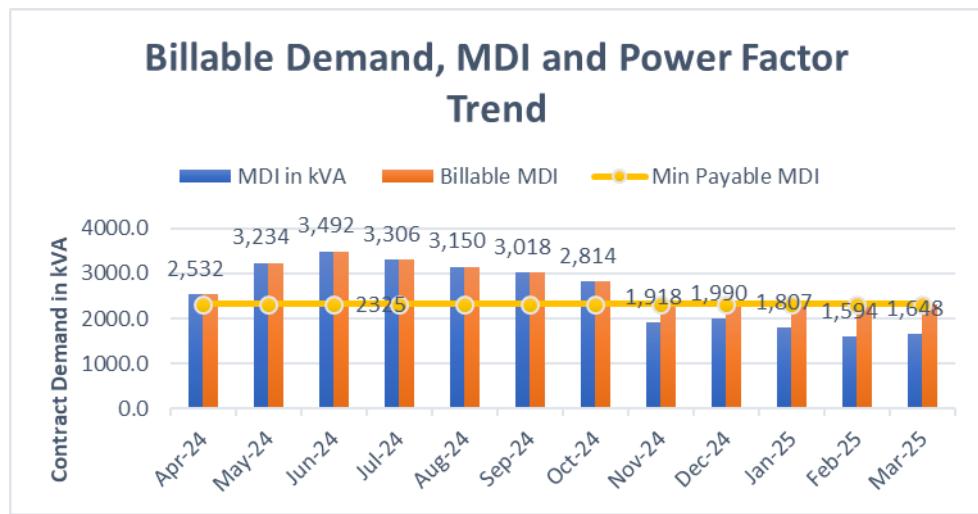



Figure 5: Contract Demand Details of 3100 kVA

The graph shows the trend of Maximum Demand Indicator (MDI), Billable MDI, and Minimum Payable MDI from April 2024 to March 2025. MDI peaked in June 2024 at 3,492 kVA and showed a gradual decline thereafter, reaching around 1,660 kVA by March 2025. The Billable MDI closely follows actual MDI, while the Minimum Payable MDI remains constant at approximately 2,250 kVA. This indicates that in the latter months, when actual demand dropped below the contractual minimum, charges were based on the fixed minimum demand rather than actual usage.

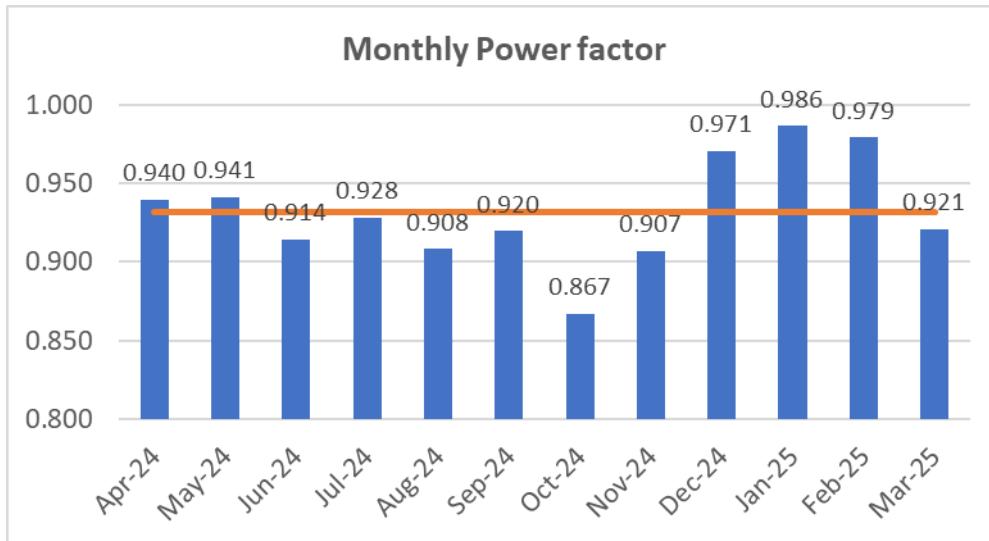



Figure 6: Monthly power factor Details

The graph illustrates the monthly power factor trend from April 2024 to March 2025. The power factor mostly hovers around the target line of approximately 0.92, with the lowest point at 0.867 in October 2024 and the highest at 0.986 in January 2025. While performance

improved significantly during December 2024 to February 2025, several months—especially June to November—showed values below the desired level, indicating scope for power factor correction to maintain consistent efficiency.

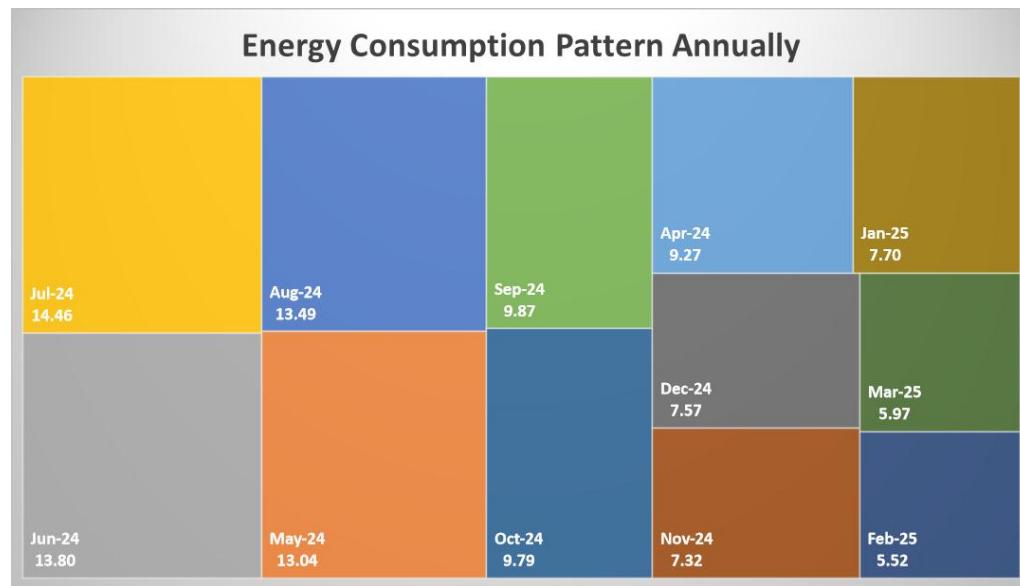



Figure 7: Energy Consumption Pattern Annually

The energy consumption pattern chart shows monthly variations from April 2024 to March 2025. Consumption peaked in July 2024 at 14.46 units (highest block), followed by consistently high usage in May, June, and August (around 13–14 units). After September, consumption steadily declined, dropping to the lowest level of 5.52 units in February 2025. This trend indicates a strong seasonal variation in energy demand, with higher loads during mid-summer months and significantly reduced consumption during winter and early spring.

Table 11: Electrical Connection and Energy Consumption Details of Bill Analysis of 1000 kVA

| Month-year        | Contractual load in kVA | Billable Demand in kVA | MDI in kVA | Energy Consumption in kWh | Energy Consumption in kWh | Power factor | Demand Charges | Energy charges | Total pay amount | Unit rate |
|-------------------|-------------------------|------------------------|------------|---------------------------|---------------------------|--------------|----------------|----------------|------------------|-----------|
| Apr-24            | 1000                    | 750                    | 329.0      | 98172                     | 97536                     | 0.994        | 120000         | 489216         | 624162           | 6.4       |
| May-24            | 1000                    | 750                    | 820.0      | 199500                    | 196296                    | 0.984        | 120000         | 1323168        | 1479534          | 7.4       |
| Jun-24            | 1000                    | 750                    | 714.0      | 246468                    | 240192                    | 0.975        | 120000         | 17,19,312      | 1946469          | 7.9       |
| Jul-24            | 1000                    | 750                    | 590.0      | 208140                    | 204756                    | 0.984        | 120000         | 1433712        | 1599375          | 7.7       |
| Aug-24            | 1000                    | 750                    | 536.0      | 173340                    | 170724                    | 0.985        | 120000         | 1154076        | 1283624          | 7.4       |
| Sep-24            | 1000                    | 750                    | 461.5      | 153780                    | 151404                    | 0.985        | 120000         | 1026060        | 1186137          | 7.7       |
| Oct-24            | 1000                    | 750                    | 450.7      | 106752                    | 105504                    | 0.988        | 120000         | 641508         | 745767           | 7.0       |
| Nov-24            | 1000                    | 750                    | 511.9      | 108864                    | 107220                    | 0.985        | 120000         | 671328         | 768679           | 7.1       |
| Dec-24            | 1000                    | 750                    | 753.1      | 228492                    | 226056                    | 0.989        | 120000         | 1571388        | 1670500          | 7.3       |
| Jan-25            | 1000                    | 750                    | 794.0      | 227916                    | 225756                    | 0.991        | 120000         | 1569960        | 1738520          | 7.6       |
| Feb-25            | 1000                    | 750                    | 606.0      | 123012                    | 121764                    | 0.990        | 120000         | 803460         | 940672           | 7.6       |
| Mar-25            | 1000                    | 750                    | 636.0      | 98772                     | 97572                     | 0.986        | 120000         | 473844         | 518689           | 5.3       |
| 12 Months Total   |                         |                        |            | 1973208                   | 1944780                   |              | 1440000        | 12877032       | 14502128         |           |
| 12 Months Average |                         |                        | 625        |                           |                           | 0.986        |                |                |                  | 7.27      |

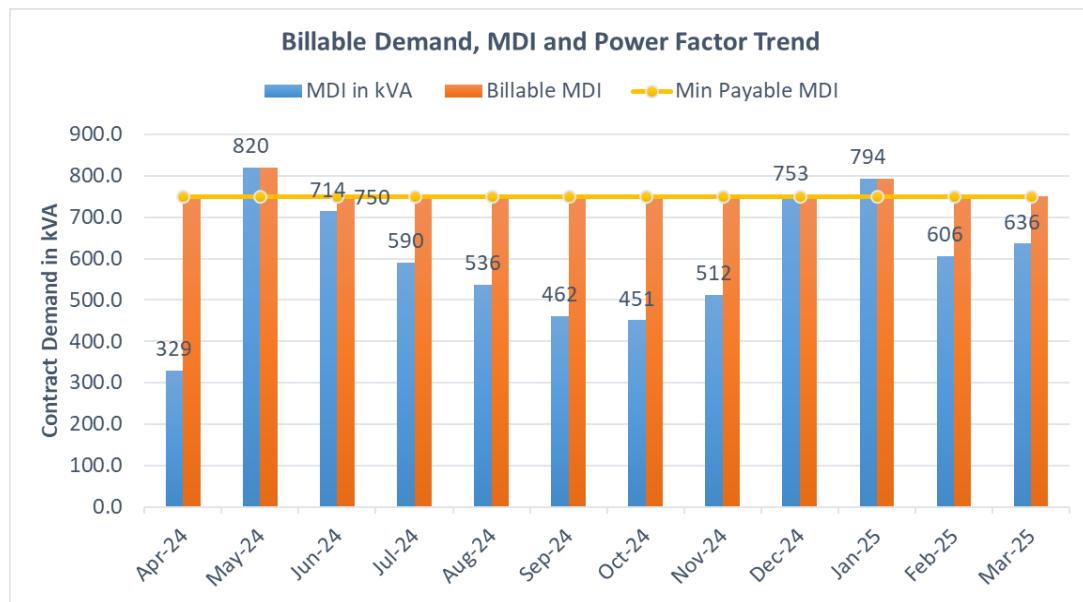



Figure 8: Contract Demand Details of 1000 kVA

This chart illustrates the trend of Maximum Demand Indicator (MDI), Billable MDI, and Minimum Payable MDI from April 2024 to March 2025. MDI peaked in May 2024 at 820 kVA and reached another high of 794 kVA in January 2025, while it dipped to its lowest level of 329 kVA in April 2024. The billable MDI closely follows actual MDI, but whenever actual demand drops below the minimum payable demand (750 kVA), charges are based on this fixed minimum level. This shows that for most months after June 2024, the plant was billed at 750 kVA despite lower actual demand.

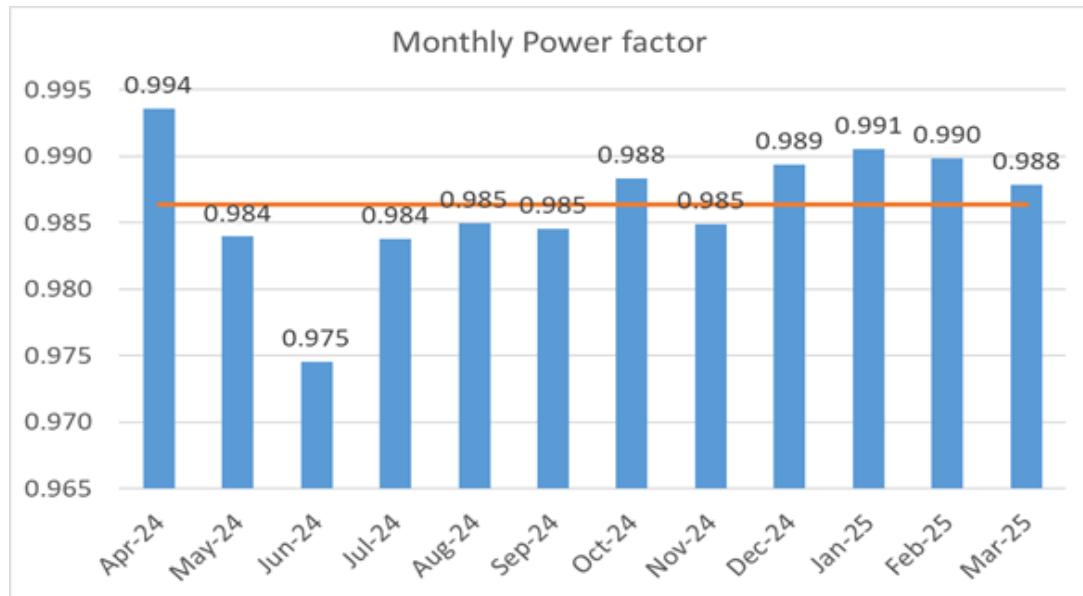



Figure 9: Annual Power Factor Details of 1000 kVA

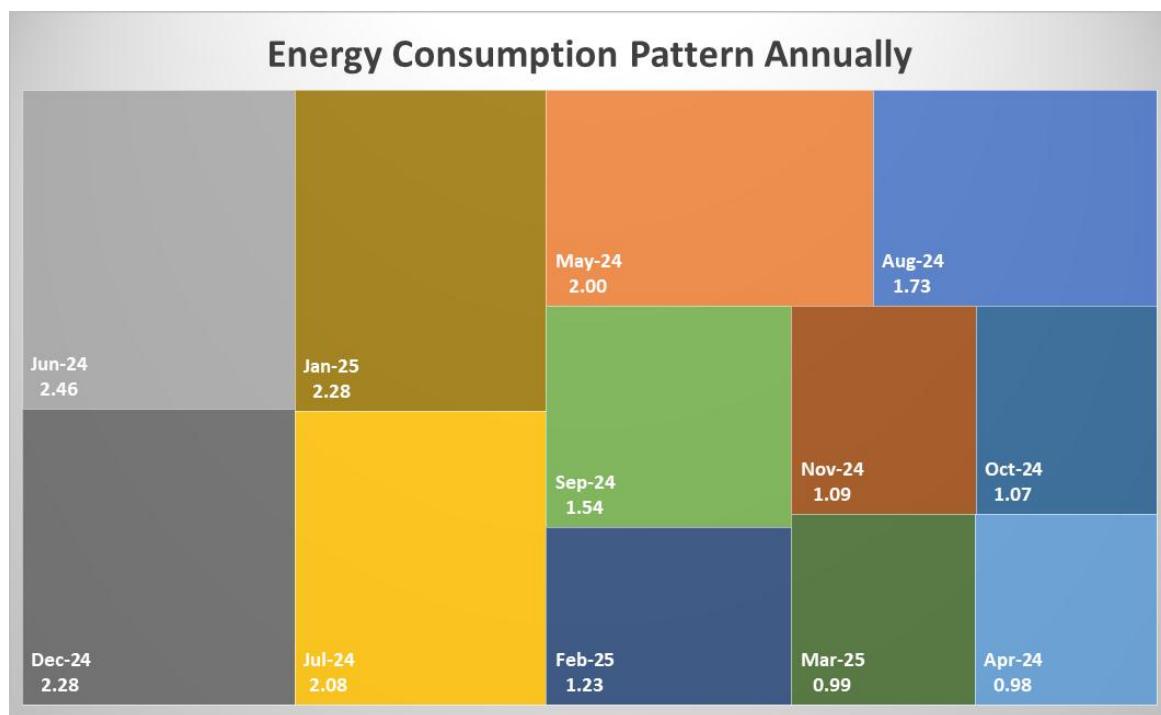



Figure 10: Energy Consumption pattern yearly of 1000 kVA

### From Electricity Bills analysis, showing on facility power consumption

Table 12: General Details &amp; Energy Consumption

| S.No. | Particulars                                                                      | Details                                            |
|-------|----------------------------------------------------------------------------------|----------------------------------------------------|
| 1.    | <b>Project Details</b>                                                           |                                                    |
|       | Audit Duration                                                                   | April 2024 -March 2025                             |
| a.    | <b>Name of the Institution</b>                                                   | <b>Swami Rama Himalayan University</b>             |
| b.    | <b>Building Covered Area</b>                                                     | <b>2,44,820 sqm</b>                                |
| c.    | <b>Connected load/ contract demand of the college</b>                            | <b>1000 kW / 3100 KVA</b>                          |
| d.    | <b>Alternate source of energy (Solar/ Wind) in institute (Type and capacity)</b> | <b>2.5 MW Solar</b>                                |
|       | Annual Units in kWh                                                              | <b>26718288 kWh</b>                                |
|       | Electricity Amount Paid in Lakhs                                                 | <b>80280076 INR/Annum</b>                          |
|       | Power Rate Rs/kWh only for Grid Power                                            | <b>Rs 6.30 /kVAh</b>                               |
| 2.    | <b>Components contributing power Load in the Campus</b>                          |                                                    |
| a.    | <b>Type/ No. of Florescent Lights</b>                                            | <b>525</b>                                         |
| b.    | <b>Type/ No. of LED Lights</b>                                                   | <b>8949</b>                                        |
| c.    | <b>Type/ No. of Air Conditioner</b>                                              | <b>900 No's, 3 star</b>                            |
| d.    | <b>Type/ No Fans</b>                                                             | <b>2500 normal &amp; 2200 BLDC fans installed.</b> |

| S.No. | Particulars                                         | Details                          |
|-------|-----------------------------------------------------|----------------------------------|
| e.    | Type/ No DG                                         | 9 (500 KVA)                      |
| f.    | Type/ No -Other equipment and electrical appliances | Exhaust Fan- 850 No's (40w Each) |
|       |                                                     |                                  |

Total Annual Electricity Consumption of Facility

Table 13: Energy consumption share from Grid, Diesel and PV Panels

| Particulars           | Percentage  |
|-----------------------|-------------|
| Electricity from Grid | 75%         |
| Diesel in Ltr         | 8%          |
| Solar                 | 17%         |
| <b>Total</b>          | <b>100%</b> |

Table 14: Energy in TOE Distribution

| Annual Energy Share          |                            |                               |             |
|------------------------------|----------------------------|-------------------------------|-------------|
| Particulars                  | Value of Energy            | ToE (Tonne of Oil Equivalent) | Percentage  |
| <b>Electricity from Grid</b> | 10933254 kWh + 1944780 kWh | 940.25 +167.25                | 75%         |
| <b>Diesel in Ltr</b>         | 137414                     | 120.9                         | 8%          |
| <b>Solar</b>                 | 2850000 kWh                | 245.1                         | 17%         |
| <b>Total</b>                 |                            | <b>1473.5</b>                 | <b>100%</b> |

The below graph showing the power consumption of Swami Rama Himalayan University Facility

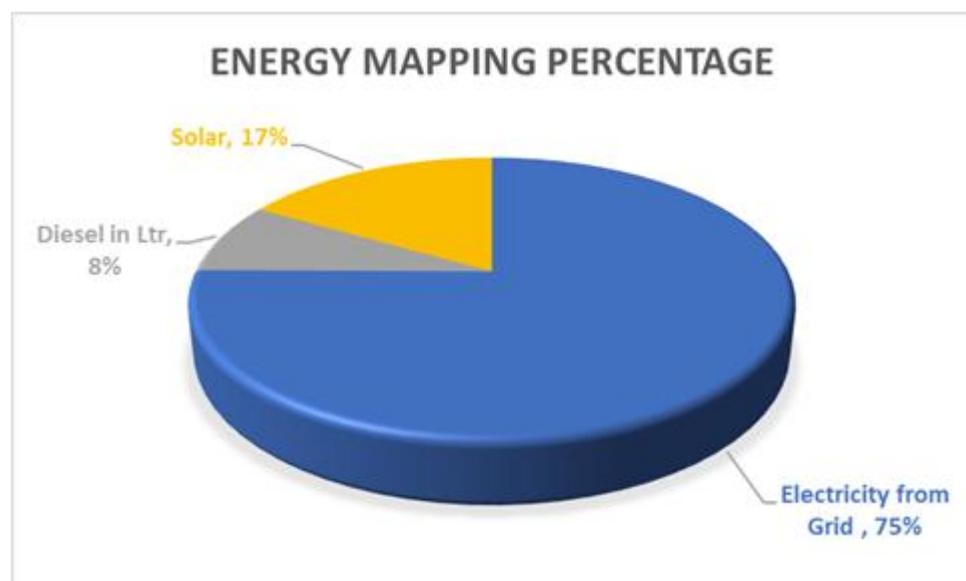



Figure 11: Energy Mapping (%)

## CHAPTER:7 ELECTRICAL SYSTEM AND POWER FACTOR

### 7.1 TRANSFORMER SECTION

The campus currently sources power from **UPCL** at 11 kV with two connections of 3100 kVA and 1000 kVA, which was stepped down to 433 V through **18 transformers** of various capacities (4 MVA, 2000 kVA, 1250 kVA, 750 kVA, 500 kVA, 315 kVA, 250 kVA, and 200 kVA). Metering is carried out at the 11-kV level.

*Table 15: Transformer Details*

| S. No | Location              | Equipment                       | Qty |
|-------|-----------------------|---------------------------------|-----|
| 1     | 33 kV Sub-station     | 4 MVA Transformer               | 2   |
|       |                       | 33 kV Breaker                   | 1   |
| 2     | DG House (Hospital)   | 500 kVA DG sets with AMF panels | 9   |
| 3     | Hospital Sub-station  | 750 kVA Transformer             | 3   |
|       |                       | 1250 kVA Transformer            | 2   |
|       |                       | 2000 kVA Transformer            | 1   |
|       |                       | 11 kV Breaker                   | 1   |
|       |                       | LT Electrical Panel Room        | 1   |
| 4     | Residence Sub-station | 11 kV Breaker                   | 2   |
|       |                       | 500 kVA Transformer             | 1   |
|       |                       | 250 kVA Transformer             | 2   |
|       |                       | 200 kVA Transformer             | 1   |
|       |                       | 750 kVA Transformer             | 1   |
| 5     | Medical College S/S   | 500 kVA Transformer             | 1   |
|       |                       | LT Panels                       | 2   |
|       |                       | 315 kVA Transformer             | 1   |
|       |                       | 11 kV Oil Circuit Breaker       | 1   |
| 6     | Tube well             | 250 kVA Transformer             | 1   |
| 7     | MBBS Hostel           | 750 kVA Transformer             | 1   |
|       |                       | 315 kVA Transformer             | 1   |

## 7.2 POWER FACTOR AT MAIN INCOMING OF 3100 KVA AND 1000 KVA

Apart from safety and reliability, several other goals, including efficiency, should be pursued in the design and implementation of electrical systems. One of the measures of efficiency in an electrical system is the efficiency with which the system transforms the energy it receives into useful work. This efficiency is indicated by a component of electrical systems known as the Power Factor. The power factor indicates how much power is actually being used to perform useful work by a load and how much power it is “wasting”. As trivial as its name sounds, it is one of the major factors behind high electricity bills, power failures, and sometimes the imbalance in electrical networks.

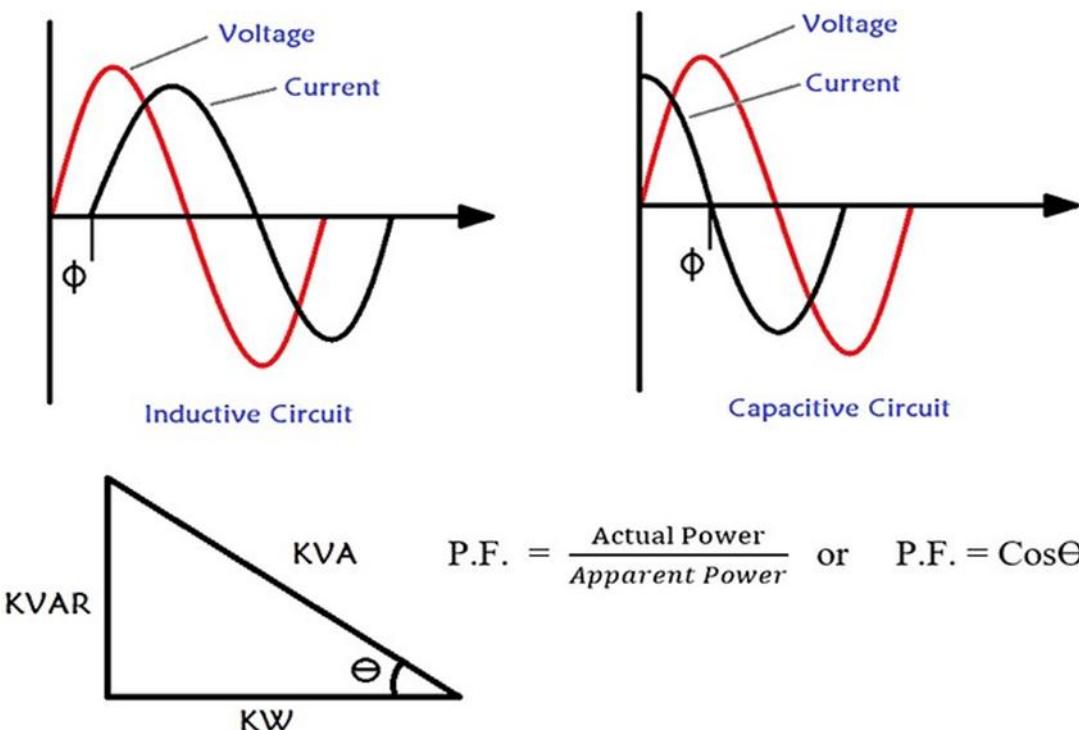



Figure 12: Power Factor Waveform

To properly describe power factor and its practical significance, it is important to understand the different types of electrical loads and components of power that exist.

From basic electricity classes, electrical loads are essentially of two types:

1. Resistive Loads
2. Reactive Loads

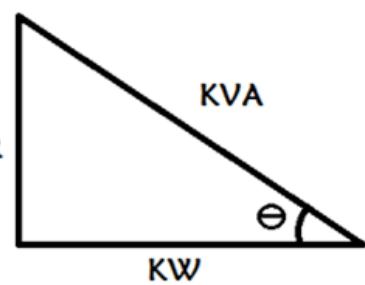
### 7.2.1 RESISTIVE LOADS

Resistive loads, as the name implies, are made up of purely resistive elements. For these loads (considering ideal conditions), all the power supplied to them is dissipated for useful work

because the current is usually in phase with the voltage. Examples of resistive loads include incandescent light bulbs and batteries.

### 7.2.2 REACTIVE LOADS

Reactive loads, on the other hand, are more complex. While they cause a drop in voltage and draw current from the source like resistive loads, they dissipate no useful power (no work is done). Reactive loads can either be capacitive or inductive. In inductive loads, the power drawn is used to set up magnetic flux without any direct work performed, while in capacitive loads, the power is used in charging the capacitor and not directly producing work. The power dissipated in reactive loads is referred to as reactive power. Reactive loads are characterized by the current leading (capacitive loads) or lagging (inductive loads) behind the voltage, resulting in a phase difference between the current and the voltage.


#### Relationship between Voltage and Current for an Inductive Load

The variations in these two types of loads lead to three power components in electrical systems:

1. Actual Power
2. Reactive Power
3. Apparent Power

- i. Actual Power This is the power associated with resistive loads. It is the power component dissipated for performing actual work in electrical systems, such as heating and lighting. It is expressed in Watts (W) and symbolically represented by the letter P.
- ii. Reactive Power This is the power associated with reactive loads. Due to the delay between voltage and current in reactive loads (either capacitive or inductive), the energy dissipated produces no work. It is referred to as reactive power and its unit is Volt-Ampere Reactive (VAR).
- iii. Apparent Power Typical electrical systems comprise both resistive and inductive loads. Thus, the total power in an electrical system is a combination of the actual and reactive power components, known as Apparent Power. Its unit is volt-amps (VA) and it is represented mathematically by the equation:

$$\text{Apparent Power} = \text{Square Root of } \{(\text{Actual Power})^2 + (\text{Reactive Power})^2\}$$



This combination leading to the apparent power is what brings about the power factor. In ideal situations, the actual power dissipated in an electrical system is usually greater than the reactive power.

By obtaining the cosine of the angle theta, we can determine the efficiency of the system in using the power it receives for work. This efficiency, evaluated as the ratio of the actual power to the apparent power, is referred to as the power factor, with values between 0 and 1. From the power triangle, according to the cosine rule (Adjacent over Hypotenuse), the power factor can be estimated as the ratio of actual power to the apparent power:

$$\text{P.F.} = \text{Actual Power} / \text{Apparent Power} \text{ or } \text{P.F.} = \cos\theta$$

An increase in reactive power (presence of a high number of reactive loads) leads to an increase in apparent power and a larger value for angle theta, resulting in a low power factor. Conversely, a reduction in reactive loads leads to an increased power factor, indicating high efficiency in systems with fewer reactive loads.

### 7.3 APFC FOR THE COLLEGE

During the Audit process the power factor of the college comes out to be 0.98 which is quite which is quite good as there are 6 APFC installed of following capacity

Table 16: Details of Capacitors

| S.No. | Capacity of APFC<br>(in KVAR) | QTY. | Total       |
|-------|-------------------------------|------|-------------|
| 1.    | 450                           | 1    | 450         |
| 2.    | 350                           | 1    | 350         |
| 3.    | 200                           | 1    | 200         |
| 4.    | 250                           | 3    | 750         |
|       | <b>Total</b>                  |      | <b>1750</b> |

### 7.4 POWER FACTOR ACCORDING TO UTTARAKHAND STATE ELECTRICITY REGULATORY COMMISSION (UPCL)

- The power factor of electricity consumers is monitored to ensure efficient energy usage. A power factor below the optimal level can lead to increased losses in the electrical system. To address this, the Uttarakhand Power Corporation Limited (UPCL) implements surcharges for low power factors and offers incentives for maintaining higher power factors.

- Surcharges for Low Power Factor:
- Consumers without Electronic Tri Vector Meters: If such consumers have not installed shunt capacitors of appropriate ratings and specifications, a surcharge is levied on the current energy charges.
- Consumers with Electronic Tri Vector Meters:
- A surcharge of 5% on current energy charges is applied for a power factor below 0.90 and up to 0.85.
- A surcharge of 10% on current energy charges is applied for a power factor below 0.85.
- Incentives for High Power Factor:
- While specific incentives for maintaining a high-power factor are not detailed in the provided sources, consumers are encouraged to maintain an optimal power factor to avoid surcharges and potentially benefit from lower energy losses and improved efficiency.
- It's important to note that these regulations are subject to change. For the most current information, consumers should refer to the latest tariff orders and notifications issued by UPCL and the Uttarakhand Electricity Regulatory Commission (UERC).

## **7.5 SOLUTION TO THE POWER FACTOR PROBLEM**

To improve the power factor, it is recommended to install an Automatic Power Factor Control (APFC) panel that can maintain the power factor above 0.999 and help generate power factor incentives, reducing the electricity bill. We recommended to install more APFC panel at both transformer ends and maintain power factor.

Certainly, if existing capacitors are faulty and the Automatic Power Factor Correction (APFC) relay has a slow response due to age, there are several suggestions to improve the power factor:

### **1. Capacitor Replacement:**

- Replace faulty capacitors with new ones to ensure efficient reactive power compensation. This will enhance the power factor correction capability.
- We suggest to install Mix type of capacitors i.e. 5, 7.5, 10, 12.5, 15, 20, 25 kVAr also in the APFC panel to enhance the better controlling.

### **2. Upgrade APFC Relay:**

- Consider upgrading the APFC relay to a newer model with faster response times. This will enable more accurate and timely adjustments to the power factor, ensuring better performance.

### 3. Regular Maintenance:

- Implement a regular maintenance schedule for both capacitors and the APFC relay. This includes cleaning, inspection, and testing to identify and address potential issues before they lead to malfunctions.

### 4. Advanced APFC System:

- Explore the possibility of installing a more advanced APFC system that incorporates modern technology for quicker and more precise power factor correction.

### 5. Monitoring and Control:

- Implement a comprehensive monitoring and control system to continuously assess the power factor and capacitor health. This allows for proactive measures and early detection of issues.

### 6. Capacity Assessment:

- Conduct a thorough assessment of the power requirements and the capacity of the existing APFC system. This ensures that the system is appropriately sized to handle the reactive power demands.

## 7.6 ENERGY & COST SAVING CALCULATION FOR ECM#1

Table 17: Power Factor Saving Calculation of 3100 kVA Connection

| S No | Particular                                     | UoM     | Present Status | Proposed Status-<br>Install APFC |
|------|------------------------------------------------|---------|----------------|----------------------------------|
| 1    | Power Consumption in System                    | kW      | 3100           |                                  |
| 2    | Energy consumption per Annum                   | kVAh    | 11780732       | 10933254                         |
| 3    | Energy consumption per Annum                   | kWh     | 10933254       | 10933254                         |
| 4    | Average pf for past 12 months                  | PF      | 0.932          | 0.999                            |
| 5    | Difference in unit's consumption due to low PF |         | 847478.0       | 0                                |
| 6    | Unit Cost                                      | Rs/Unit | 5.54           | 5.54                             |
| 7    | Extra Avoidable Charges due to low pf          | Rupees  | 4691457.2      | 0                                |

| S No | Particular                                    | UoM              | Present Status | Proposed Status-Install APFC |
|------|-----------------------------------------------|------------------|----------------|------------------------------|
| 9    | Required kVAR to Improve Power Factor         | kVAr             |                | 1064.6                       |
| 10   | <b>Annual Energy Savings in Cost</b>          | <b>Rs. Lakhs</b> |                | <b>46.9</b>                  |
| 11   | <b>Investment on capacitor for APFC Panel</b> | <b>Rs. Lakhs</b> |                | <b>12.8</b>                  |
| 12   | <b>Payback Period</b>                         | <b>Months</b>    |                | <b>3.3</b>                   |

Table 18: Power Factor Saving Calculation of 1000 kVA Connection

| S No | Particular                                    | UoM              | Present Status | Proposed Status-Install APFC |
|------|-----------------------------------------------|------------------|----------------|------------------------------|
| 1    | Power Consumption in System                   | kW               | 1000           |                              |
| 2    | Energy consumption per Annum                  | kVAh             | 1973208        | 1944780                      |
| 3    | Energy consumption per Annum                  | kWh              | 1944780        | 1944780                      |
| 4    | Average pf for past 12 months                 | PF               | 0.986          | 0.999                        |
| 5    | Difference in units consumption due to low PF |                  | 28428.0        | 0                            |
| 6    | Unit Cost                                     | Rs/Unit          | 7.20           | 7.196517819                  |
| 7    | Extra Avoidable Charges due to low pf         | Rupees           | 204582.6       | 0                            |
| 9    | Required kVAR to Improve Power Factor         | kVAr             |                | 127.3                        |
| 10   | <b>Annual Energy Savings in Cost</b>          | <b>Rs. Lakhs</b> |                | <b>2.0</b>                   |
| 11   | <b>Investment on capacitor for APFC Panel</b> | <b>Rs. Lakhs</b> |                | <b>1.5</b>                   |
| 12   | <b>Payback Period</b>                         | <b>Months</b>    |                | <b>9.0</b>                   |

## 7.7 DIRECT DEMAND MONITORING & CONTROL SYSTEM

Maximum demand tends to reach present limit, shedding some of non-essential loads temporarily can help to reduce it. It is possible to install direct demand monitoring & control system, which will switch off non-essential loads when a present demand is reached. Simple

system gives an alarm, and the loads are shed manually. Sophisticated microprocessor-controlled system is also available, which will provide a wide variety of control options like:

- Accurate prediction of demand
- Graphical display of present load, available load, demand limit.
- Visual and audible alarm
- Automatic load shedding in predetermined sequence.
- Automatic restoration of load

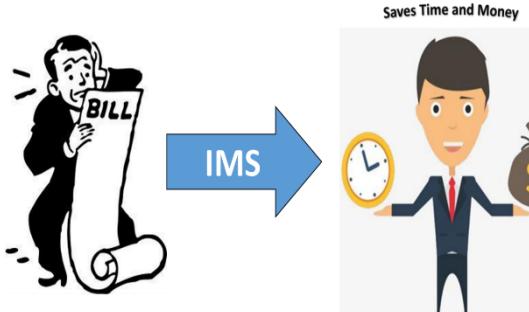
## 7.8 INTEGRATED MANAGEMENT SYSTEM WITH IOT BASED

### 7.8.1 OBSERVATION

- The university currently tracks energy and resource usage manually
- There is no system in place to monitor energy consumption or predict issues in real-time.
- Resource data (electricity, water, gas, etc.) is stored in scattered formats (registers, Excel sheets, etc.).
- It is difficult to analyse trends or compare performance across departments or buildings.
- No early warnings for equipment failure, energy spikes, or leakages.
- Without accurate tracking, there is a risk of overuse or underuse of resources.
- Potential savings and improvements go unrealized.

### 7.8.2 RECOMMENDATION

We recommend implementing an **IoT-Based Integrated Management System (IMS)**.


#### Power System Management

- Install IoT sensors on power lines and major equipment.
- Monitor voltage, current, and power quality.
- Ensure energy compliance and prevent overuse or surges.

#### Resource Accounting

- Track how much energy, water, gas, etc., is used in each department or building.
- Know where exactly the energy is going
  - lights, ACs, labs, etc.

IMS/EMS helps you to cut energy costs and save money



#### Resource Productivity

- Analyze usage vs. output.
- Find which departments are using energy efficiently and which are wasting it.

### **Resource Cost Saving**

- Detect unusual spikes, leaks, or idle equipment consuming power.
- Find and fix energy losses.
- Save money by identifying high-cost areas and optimizing them.

### **Predictive Maintenance**

- Use smart sensors to detect early signs of equipment issues (like overheating, vibration, etc.).
- Get alerts before breakdowns happen.
- Plan maintenance in advance, saving time and money.

### **Multi-Resource Management**

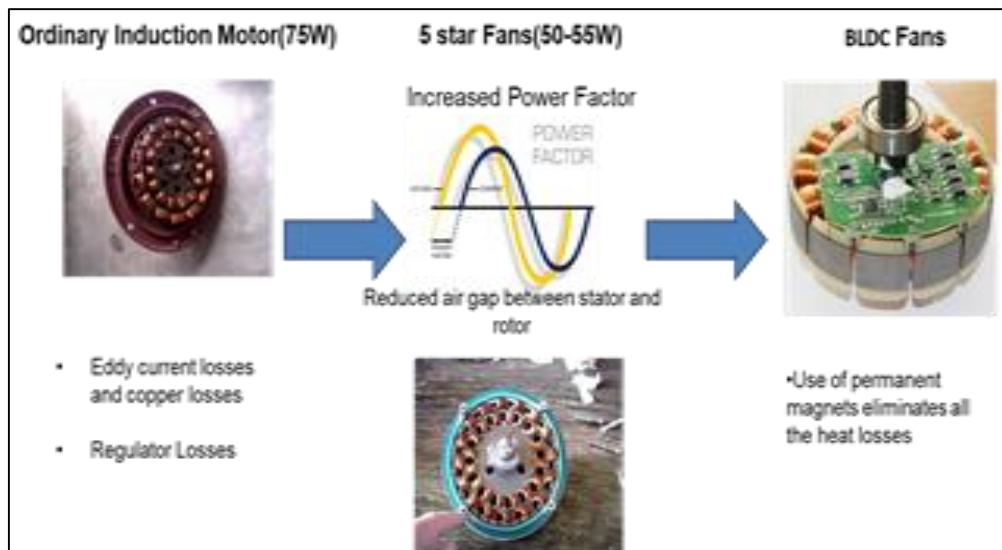
- Integrate air, water, gas, steam, and fuel usage into a single platform.
- View all resource data on a dashboard – real-time, historical, and predictive.

### **Better Decision Making**

- With proper data, the administration can make informed decisions.
- Helps in budgeting, planning energy-efficient upgrades, and meeting sustainability goals.

## CHAPTER:8 STUDY OF CEILING FANS SYSTEMS

### 8.1 CEILING FANS DETAILS


The University currently has approximately 2500 conventional ceiling fans, each consuming 60 watts of power and New BLDC Ceiling of 2200 Nos are installed. Many of these fans are quite old, and some may not be in working condition. To improve energy efficiency, it is recommended to replace these outdated fans with modern technology ceiling fans rated at 28 watts. This switch will result in a significant reduction in power consumption.

*Table 19: Details of existing Installed Fans in the campus*

| S. No | Specification Items | Total Nos | Watt. | Total Load (kW) |
|-------|---------------------|-----------|-------|-----------------|
| 1     | Ceiling Fans        | 2500      | 60    | 150             |

### 8.2 REPLACE EXISTING CEILING FANS WITH NEW BLDC CEILING FANS ON FAILURE REPLACEMENT BASIS

The new energy-efficient BLDC fans consume significantly less power while delivering the same level of airflow. Additionally, they offer various advantages, such as reduced noise levels and longer operational lifespans.



*Figure 13: New Technology Energy Efficient BLDC Fans*

A brushless DC (BLDC) motor is a synchronous electric Motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than mechanical commutator and brushes. In BLDC motors, current to torque and voltage to rpm are linear relationships. This linearity provides an excellent opportunity to use the BLDC motor in the conventional ceiling fans.

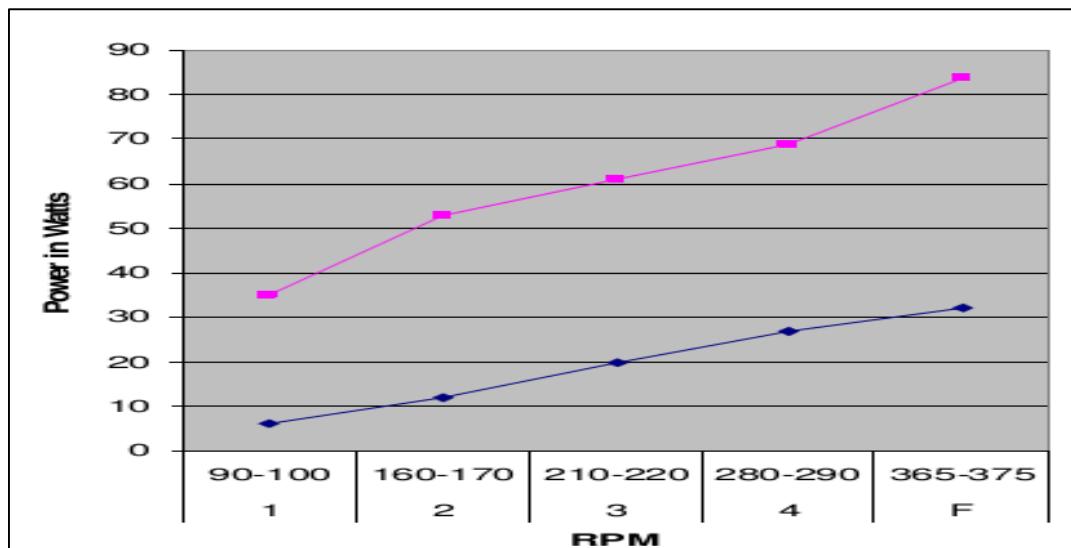



Figure 14: RPM Vs Power Consumption of Fans

This paper presents practical implementation of such BLDC motor for ceiling fan application along with the actual power measurements in comparison with conventional ceiling fans. Complete electronics and the associated advantages and disadvantages of this BLDC ceiling fans are also presented.

### **Why BLDC Fans?**

Today the typical ceiling fan is based on AC motors which are more power consuming. Along with this the typical AC motor-based fans have the rpm control through the capacitor or resistor-based regulators and is not efficient as there is loss in the regulator itself to some extent. In addition, the RPM control is by controlling the voltage and the voltage fluctuations of the mains make it very challenging to have constant RPM based on the AC mains supply. Further, existing AC motor solution, results in power factor (PF) degradation with no improvement for PF and there are other side effects like harmonics injection to the AC mains, etc.

The total amount of air flow or displacement is based on the blade size & rpm and does not change due to any other factor. The proposed solution is to keep the same air flow or displacement with less of energy usage along with improving the PF using the BLDC motor-based ceiling fans. Typical BLDC motor-based ceiling fan has much better efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operates out of 24 V DC through an SMPS (switched mode power supply) having input AC which can vary from 90 V to 270 V. Following graph shows the comparison between BLDC and conventional ceiling fans

The power consumption is less than half at full speed and is about 20% at low speed for the BLDC motor compared to the conventional motor-based ceiling fan, as can be seen from the graph above. The Power Supply (PS) used is at 85% efficiency and the electronics circuit consumes less than 0.5 Watt. Generally, 210-220 RPM conventional fans are used which consumes almost 50-Watt power. From graph, as can be seen that same RPM BLDC motor consumes almost half power.

|                           | Gorilla 900 mm | Gorilla 1050 mm | Gorilla 1200 mm | Gorilla 1400 mm | Gorilla Premium Earth brown | Gorilla Premium Sand Grey |
|---------------------------|----------------|-----------------|-----------------|-----------------|-----------------------------|---------------------------|
| Power Consumption (Watts) | 28             | 32              | 28              | 35              | 28                          | 28                        |
| Air Delivery (CMM)        | 175            | 210             | 220             | 270             | 220                         | 220                       |
| RPM                       | 450            | 430             | 350             | 270             | 350                         | 350                       |
| Service Value             | 7.1            | 6.6             | 7.8             | 7.7             | 7.8                         | 7.8                       |
| Power Factor              | 0.98           | 0.98            | 0.98            | 0.99            | 0.98                        | 0.98                      |
| Blade Span (mm/inch)      | 900/36         | 1050/42         | 1200/48         | 1400/56         | 1200/48                     | 1200/48                   |

Figure 15: Rated specifications of various sizes are given below for ready reference:

### 8.3 ENERGY & COSTING CALCULATION FOR ECM#2

We recommend to,

- Replace existing ceiling fans of 60 – 70 Watts with 28 watts BLDC fan.

Table 20: Energy and Cost Saving Calculation

| Particulars                                    | Parameters | Future Scenario                         |
|------------------------------------------------|------------|-----------------------------------------|
| Type of Recommendations                        | -          | Install new technology BLDC ceiling fan |
| Present Ceiling fan                            | Nos        | <b>2500</b>                             |
| Present Ceiling Fan Power                      | Watts      | 60.0                                    |
| Annual Operational Days                        | Days/Annum | 210.0                                   |
| Daily Operational Hours                        | Hours/Day  | 7.0                                     |
| Plant's Present ceiling fan energy Consumption | kWh/Annum  | 220500                                  |
| Proposed New Ceiling Fan Power                 | Watts      | 28.0                                    |
| Proposed Ceiling Fan Energy Consumption        | kWh/Annum  | 102900                                  |

| Particulars                      | Parameters        | Future Scenario |
|----------------------------------|-------------------|-----------------|
| Annual Energy Saving Potential   | kWh/Annum         | 117600          |
| Unit cost                        | Rs/Unit           | 6.30            |
| Savings in Energy Bill Per Annum | Rs.<br>Lakh/Annum | 7.40            |
| Investment                       | Lakhs Rupees      | 61.5            |

**Note: The Return on Investment (ROI) for Energy Conservation Measures (ECM) is high, attributed to reduced operating hours and higher initial costs. Therefore, we recommend implementing of ECMs in a phased Manner approach or as failure replacements Policy to get benefits.**

## CHAPTER:9 STUDY OF AIR CONDITIONING SYSTEMS

### 9.1 AIR CONDITIONING STUDY & PERFORMANCE ANALYSIS

The University has split and window of around 900 Nos air conditioners are installed in the building. Performance measurements and analysis were conducted during the audit to calculate the air conditioner performance in kW/TR. Based on these findings, we recommend replacing the existing ACs with new 5 Star ACs

*Table 21: Air Conditioning installed at Institute*

| Description                                        | Total |
|----------------------------------------------------|-------|
| Air conditioner, Make LG, Blue star, Voltas, Dakin | 900   |

### 9.2 REPLACE EXISTING 3 STAR ACS WITH INVERTER TECHNOLOGY 5 STAR ACS ON FAILURE REPLACEMENT BASIS

The lower be the kW/TR value, lower will be the power consumption of AC and hence lower will be impact on energy cost. So, if we can see in above table 5 Stars ACs, have lower SEC i.e., kW/ TR as compared to 3-star ACs of the same rating. Thus, obviously it is recommended to install 5-star AC preferably to reduce operational cost.

Now -a – Days new star rated inverter-based air conditioners are coming in market having lower values of kW/ TR. this means lower specific energy consumption for the same output. The rated Specific energy consumption of split Air conditioner is in the range of 0.90-1.0 kW/ TR. this is much lower than the specific energy consumption of installed air conditioner. In addition to this these air conditioners are coming with inverter-based technology.

#### What is inverter technology?

A regular air conditioner will always run at peak power requirement when the compressor is running. An air conditioner with inverter technology will run continuously but will draw only that much power that is required to keep the temperature stable at the level desired. So, it is kind of automatically adjusts its capacity based on the requirement of the room it is cooling. Thus, drawing much less power and consuming lesser units of electricity.

Thus, it is advisable to replace air conditioners which are old and having higher specific energy consumption. Since the operational hours of air conditioners are very less, it will be beneficial if facility team replace old air conditioner having higher running hours on priority basis.

#### We recommend to

- Replace old air conditioner having higher running hours on priority on failure replacement basis
- Procure new air conditioner based on energy efficiency ratings provided by Bureau of energy efficiency.
- Replace rest other non-energy efficient air conditioner based on failure basis.

### 9.3 ENERGY & COST SAVING CALCULATION OF ECM# 3 FOR AIR CONDITIONING

Table 22: Energy and Cost Saving Calculation

| Particulars                                      | Parameters     | Future Scenario |
|--------------------------------------------------|----------------|-----------------|
| Type of Recommendations for 5 Star Inverter      | -              | 5-Star Split AC |
| Considering 25 no of AC for 3 Start Non-Inverter | Nos            | 25              |
| Total Cooling LOAD                               | TR             | 37.5            |
| Present Split AC Power                           | kW/TR          | 2               |
| Present Power Consumption                        | kW             | 75              |
| Annual Operational Days                          | Days/Annum     | 150             |
| Daily Operational Hours                          | Hours/Day      | 7               |
| Plant's Present AC energy Consumption            | kWh/Annum      | 78750           |
| Proposed 5-Star AC Power                         | kW/TR          | 0.75            |
| Proposed Power Consumption                       | kW             | 28.125          |
| Proposed 5-Star AC Energy Consumption            | kWh/Annum      | 29531           |
| Annual Energy Saving Potential                   | kWh/Annum      | 49219           |
| Unit cost                                        | Rs/Unit        | 6.30            |
| Savings in Energy Bill Per Annum                 | Rs. Lakh/Annum | 3.10            |
| Investment                                       | Lakhs Rupees   | 8.75            |
| Payback period                                   | Months         | 34              |

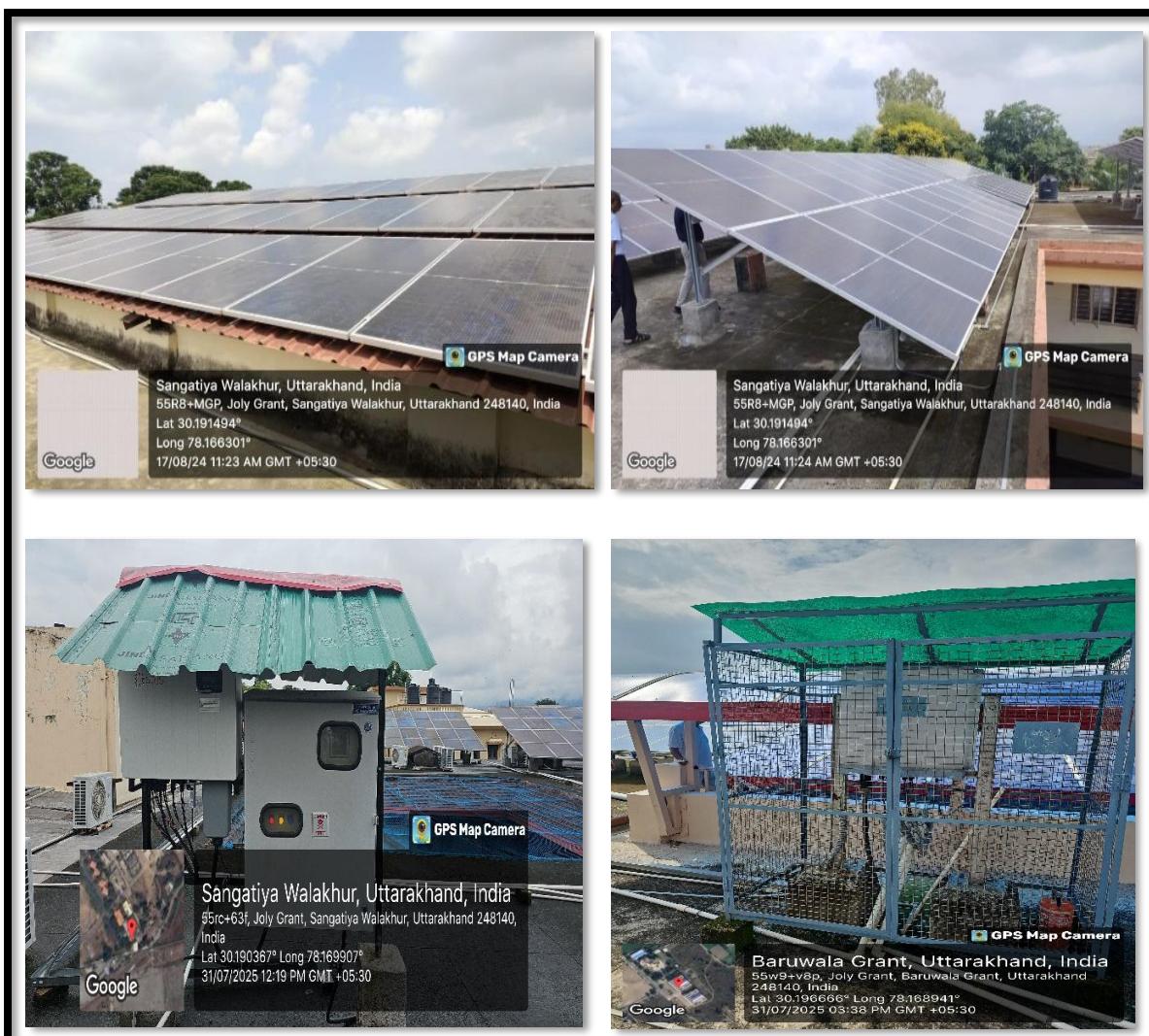
## CHAPTER:10 LIGHTING SYSTEM AND LUX LEVEL STUDY

The lux level study of different areas or rooms were done during the audit in the College. Some area has good lux level but some has to improve.

Table 23: Light Load Details of different Section of College

| Sl. No | Location                                        | 2x16 W LE D | 16 W D. L | 20 watt LE D | 18 Watt LED   | 12 w LE D Bul b | (2'x2' ) 36 W | Surfa ce Light-12 W LED | 2'x2' 48 Watt | 30 watt Street Light | 45 Watt Street Light | Floo d Light 50 watt | Floo d Light 150 watt |
|--------|-------------------------------------------------|-------------|-----------|--------------|---------------|-----------------|---------------|-------------------------|---------------|----------------------|----------------------|----------------------|-----------------------|
|        |                                                 |             |           |              | Corrid o r    |                 | Recessed      |                         |               |                      |                      |                      |                       |
| 1      | Himalayan School of Science & Technology (HSST) | 299         | 274       |              | 148           |                 | 32            |                         |               |                      |                      |                      |                       |
| 2      | Himalayan School of Management Studies (HSMS)   | 299         | 274       |              | 148           |                 | 32            |                         |               |                      |                      |                      |                       |
| 3      | Himalayan Hospital_N ew OPD Building            |             |           |              | 1746(4' long) |                 |               |                         |               |                      |                      |                      |                       |
| 4      | Activity center (Creche / Shoping Mall)         |             | 270       |              | 37            |                 |               | 110                     |               |                      |                      |                      |                       |

| Sl. No | Location                                                 | 2x16 W LE D | 16 W D. L | 20 watt LE D | 18 Watt LED | 12 w LE D Bulb | (2'x2' ) 36 W | Surfa ce Light-12 W LED | 2'x2' 48 Watt | 30 watt Street Light | 45 Watt Street Light | Floo d Light 50 watt | Floo d Light 150 watt |
|--------|----------------------------------------------------------|-------------|-----------|--------------|-------------|----------------|---------------|-------------------------|---------------|----------------------|----------------------|----------------------|-----------------------|
|        |                                                          |             |           |              | Corrid o r  |                | Recessed      |                         |               |                      |                      |                      |                       |
| 5      | Himalayan Hospital, Laboratory, Central Library building |             | 600       |              | 310         |                | 100           |                         | 934           |                      |                      |                      |                       |
| 6      | Cancer Research Institue (CRI)                           |             |           |              |             |                | 183           |                         |               |                      |                      |                      |                       |
| 7      | Himalayan Institute of Medical Sciences (HIMS)           |             |           |              | 127         | 49             | 42            |                         | 49            |                      |                      |                      |                       |
| 8      | Himalayan College of Nursing (HCN)                       |             |           |              | 25          |                | 49            |                         | 32            |                      |                      |                      |                       |
| 9      | Himalayan school of Yoga Sciences (HSYS)                 |             |           |              | 101         |                |               |                         |               |                      |                      |                      |                       |
|        | Himalayan                                                |             |           |              |             |                |               |                         |               |                      |                      |                      |                       |


| Sl. No | Location                      | 2x16 W LE D | 16 W D. L | 20 watt LE D | 18 Watt LED | 12 w LE D Bulb | (2'x2' ) 36 W | Surfa ce Light-12 W LED | 2'x2' 48 Watt | 30 watt Street Light | 45 Watt Street Light | Floo d Light 50 watt | Floo d Light 150 watt |
|--------|-------------------------------|-------------|-----------|--------------|-------------|----------------|---------------|-------------------------|---------------|----------------------|----------------------|----------------------|-----------------------|
|        |                               |             |           |              | Corrid o r  |                | Recessed      |                         |               |                      |                      |                      |                       |
| 10     | School of Bio sciences (HSBS) |             |           |              | 154         | 33             |               |                         |               |                      |                      |                      |                       |
| 11     | Trauma Center Hospital        |             | 195       |              | 20          |                | 100           |                         |               |                      |                      |                      |                       |
| 12     | Campus Lighting               |             |           |              |             |                |               |                         |               | 250                  | 51                   | 70                   | 30                    |
| 13     | WWR                           |             |           | 209          |             |                |               |                         |               |                      |                      |                      |                       |
| 14     | WMR                           |             |           | 150          |             |                |               |                         |               |                      |                      |                      |                       |
| 15     | New PG Hostel (Boys & Girls)  |             |           | 258          |             |                |               |                         |               |                      |                      |                      |                       |
| 16     | Old PG hostel                 |             |           | 109          |             |                |               |                         |               |                      |                      |                      |                       |
| 17     | MBBS Hostel                   |             |           | 700          |             |                |               |                         |               |                      |                      |                      |                       |
| 18     | Residence                     |             |           | 350          |             |                |               |                         |               |                      |                      |                      |                       |
|        | Total Qty                     | 598         | 1613      | 1776         | 2816        | 82             | 538           | 110                     | 1015          | 250                  | 51                   | 70                   | 30                    |
|        | Total Watt                    | 19136       | 25808     | 35520        | 50728       | 984            | 19368         | 1320                    | 48720         | 7500                 | 2295                 | 3500                 | 4500                  |

## CHAPTER:11 STUDY OF SOLAR SYSTEM

### 11.1 EXISTING SYSTEM

During the detailed energy audit, the Swami Rama Himalayan University audit team and the facility team jointly studied the 2500 kWp solar PV system that had been installed. The college building has ample space i.e. Roof top area on hostels, auditorium buildings. The average power generation from a 1 KW SPV System is around 4-5 kWh per day. Also, the SPV power generation varies with time of day, the balance power requirements are automatically met by the grid supply during this period. However, it was noted that the generation of this system is managed by university and reduction due to electricity generation was reflected in electricity bill.

Picture 4: Solar Panels



## **11.2 RECOMMENDATION**

We recommended to University to kindly maintain record on day by day based for solar PV plant to know the performance and plan the cleaning of solar panels accordingly. Regular operation and maintenance of the SPV power plant after commissioning is essential. This includes the supply of consumable items as necessary and the submission of daily analysis and evaluation of operational plant data through remote monitoring. Key activities include:

- Visual inspections.
- Data recording using a robust data-logger and related sensors to measure irradiation, ambient and module temperature, and energy output of the power plant. Information is accessible through a web interface from any location.
- Monthly/yearly energy and performance reporting.
- Plant health monitoring and troubleshooting measures.
- Module cleaning, preventive and scheduled maintenance, and replacement work as required.
- Emergency response.
- Refurbishments & warranty claim management and redressal system.

Preventive inspection and maintenance of system components according to manufacturer's specifications, documentation of events and measures, and provision of small parts and operating material are also included. Fault detection and analysis involve function checks after fault messages are received, immediate start of fault removal measures, and long-term trend analysis. Analysis of interruptions and incidents, and supply chain management for spare parts such as modules, inverters, cabling, and mechanical components are essential.

## CHAPTER:12 SOLAR WATER HEATING SYSTEM

### 12.1 EXISTING SYSTEM

Solar water heaters sometimes called solar domestic hot water systems can be a cost-effective way to generate hot water. They can be used in any climate, and the fuel they use sunshine is free. There are solar water boilers in the facility. Following is the comparison of solar heater with electricity.

From the data given by the college we absorb that the facility has installed 450 numbers of solar water heater of capacity 2.5 KW which is sufficient

Picture 5: Solar Water Heater



| TECHNICAL SPECIFICATION OF ALPHA PRO |           |                          |           |           |           |
|--------------------------------------|-----------|--------------------------|-----------|-----------|-----------|
| Parameter                            | VTC 100 L | VTC 150 L                | VTC 200 L | VTC 250 L | VTC 300 L |
| Angle of Stand                       | °         |                          | 25        |           |           |
| Heating Element                      |           |                          | Optional  |           |           |
| Anode provision (Ø21.3x 165mm )      | No        | 1                        | 1         | 1         | 1         |
| Corrosion Protection                 |           | Mg Anode, Dia.21 x 165mm |           |           |           |
| Inlet with 3/4"                      | nos       | 1                        | 1         | 1         | 1         |
| Vent Pipe (Bottom)                   | nos       | 1                        | 1         | 1         | 1         |
| Outlet (Bottom Opening D47)          | nos       | 3/4"                     | 3/4"      | 3/4"      | 3/4"      |
| Base Length (L)                      | mm        | 1965                     | 1965      | 1965      | 1965      |
| Base Width (B)                       | mm        | 812                      | 1212      | 1612      | 2012      |
| Height (H)                           | mm        | 1150                     | 1150      | 1150      | 1150      |
| Tank Length (A)                      | mm        | 1197                     | 1597      | 2097      | 2647      |

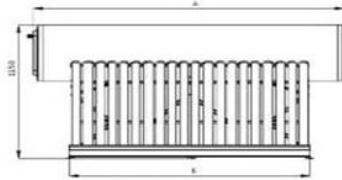
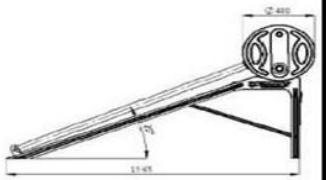





Figure 16: Technical specifications of solar water boiler

## CHAPTER:13 CONCLUSION

### 13.1 CUMULATIVE ENERGY SAVING OPPORTUNITIES

Table 24: Summary of Energy Saving Opportunities

| Particulars                                                                                  | Annual Savings |     |     |                   | Estimated Investment<br>(Rs in Lakh) |
|----------------------------------------------------------------------------------------------|----------------|-----|-----|-------------------|--------------------------------------|
|                                                                                              | kWh            | TOE | CO2 | Saving Rs in Lakh |                                      |
| Improve the Power Factor in the system in 3100 kVA                                           |                |     |     | 46.5              | 12.90                                |
| Improve the Power Factor in the system in 1000 kVA                                           |                |     |     | 2.00              | 1.00                                 |
| Replace Existing Ceiling Fans with low wattage Ceiling Fans on Failure Replacement Basis     | 117600         |     |     | 7.40              | 61.50                                |
| Replace Existing 3 Star ACs with Inverter Technology 5 Star ACs on Failure Replacement Basis | 49219          |     |     | 3.10              | 8.50                                 |
| <b>Total</b>                                                                                 | <b>166819</b>  |     |     | <b>59.00</b>      | <b>83.90</b>                         |
| Monitoring of Solar PV System                                                                |                |     |     |                   |                                      |

Note: The Return on Investment (ROI) for Energy Conservation Measures (ECM) is high, attributed to reduced operating hours and higher initial costs. Therefore, we recommend implementing of ECMs in a phased Manner approach or as failure replacements Policy to get benefits.

#### Net Saving:

Energy Saving: 166819 kWh per annum

Cost Saving: 59.00 Lakhs per annum

Investment: 83.90 Lakhs

## ANNEXURE

### ANNEXURE-1: AUDIT CERTIFICATE



## ENERGY AUDIT CERTIFICATE

(FOR THE YEAR 2024-25)

IS ISSUED TO

*Swami Rama Himalayan University*

LOCATED AT SWAMI RAM NAGAR, DOIWALA,  
DEHRADUN, UTTARAKHAND

for the successful completion of the **Energy Audit** for the year **2024-25**, conducted by M/s Ecoscience Consultancy. This recognition underscores the institution's commitment to sustainability and energy efficiency.

The University is certified to have done exceptionally well to conserve energy and sustainable development for the assessment period.

**Mr. Pankaj Dhole**

Lead Auditor

(BEE Approved Energy Auditor)

**Award Date: 18<sup>th</sup> August 2025**



**ANNEXURE-2: AUDITOR CERTIFICATE AND ISO CERTIFICATES**

Reg No.: EA-28926



Certificate No.: 9782/19

**National Productivity Council**  
(National Certifying Agency)  
**PROVISIONAL CERTIFICATE**

*This is to certify that Mr./Mrs./Ms. ....*

**PANKAJ DHOTE**  
*son / daughter of Mr. ....* has passed the National certification  
Examination for Energy Auditors held in September 2018, conducted on behalf of the Bureau of Energy Efficiency,  
Ministry of Power, Government of India. He / She is qualified as **Certified Energy Manager** as well as  
**Certified Energy Auditor**.

*He / She shall be entitled to practice as Energy Auditor under the Energy Conservation Act 2001 subject to the fulfillment  
of qualifications for Accredited Energy Audit and issuance of certificate of Accreditation by the Bureau of Energy  
Efficiency under the said Act.*

*This certificate is valid till the Bureau of Energy Efficiency issues an official certificate.*

Place : Chennai, India

Date : 22nd April, 2019

Digitally Signed by: K V R RAJU  
Mon Apr 22 16:23:40 IST 2019  
Controller of Examination, NPC AIP Chennai

  
Controller of Examination



## Certificate of Registration

This is to certify that

### ECOSCIENCE CONSULTANCY

LAKSHMI VIHAR COLONY, BAHADRBAD, HARIDWAR  
UTTARAKHAND STATE -249402, INDIA.

has been independently assessed by QRO  
and is compliant with the requirement of:

**ISO 9001:2015**

### Quality Management System

For the following scope of activities:

**PROVIDING EXPERT SOLUTION IN THE FIELD OF ENVIRONMENT MONITORING, WASTEWATER MANAGEMENT (ETP/STP INSTALLATION AND MAINTENANCE), THIRD PARTY AUDITS (FOR WASTE MANAGEMENT), GREEN AUDITS, ENERGY AUDITS, CARBON FOOTPRINT.**

Date of Certification: 14th January 2025

2<sup>nd</sup> Surveillance Audit Due: 13th January 2027

1<sup>st</sup> Surveillance Audit Due: 13th January 2026

Certificate Expiry: 13th January 2028

**Certificate Number: 305025011408Q**



A handwritten signature in blue ink, appearing to read 'Chandan ..'.

Head of Certification

Validity of this certificate is subject to annual surveillance audits to be done successfully on or before 365 days from date of the audit.  
(In case surveillance audit is not allowed to be conducted: this certificate shall be suspended / withdrawn).

The Validity of this certificate can be verified at [www.qrocert.org](http://www.qrocert.org)

This certificate of registration remains the property of QRO Certification LLP, and shall be returned immediately upon request.

India Office : QRO Certification LLP  
142, 11<sup>th</sup> Floor, Avtar Enclave, Near Paschim Vihar West Metro Station, Delhi-110063, (INDIA)  
Website : [www.qrocert.org](http://www.qrocert.org), E-mail : [info@qrocert.org](mailto:info@qrocert.org)



## Certificate of Registration

This is to certify that

### ECOSCIENCE CONSULTANCY

LAKSHMI VIHAR COLONY, BAHADRBAD, HARIDWAR  
UTTARAKHAND STATE -249402, INDIA.

has been independently assessed by QRO  
and is compliant with the requirement of:

**ISO 14001:2015**

### Environmental Management System

For the following scope of activities:

**PROVIDING EXPERT SOLUTION IN THE FIELD OF ENVIRONMENT MONITORING, WASTEWATER MANAGEMENT (ETP/STP INSTALLATION AND MAINTENANCE), THIRD PARTY AUDITS (FOR WASTE MANAGEMENT), GREEN AUDITS, ENERGY AUDITS, CARBON FOOTPRINT.**

Date of Certification: 14th January 2025

2<sup>nd</sup> Surveillance Audit Due: 13th January 2027

1<sup>st</sup> Surveillance Audit Due: 13th January 2026

Certificate Expiry: 13th January 2028

**Certificate Number: 305025011409E**



A handwritten signature in blue ink.

Head of Certification

Validity of this certificate is subject to annual surveillance audits to be done successfully on or before 365 days from date of the audit.  
(In case surveillance audit is not allowed to be conducted; this certificate shall be suspended / withdrawn).

The Validity of this certificate can be verified at [www.qrocrt.org](http://www.qrocrt.org)  
This certificate of registration remains the property of QRO Certification LLP, and shall be returned immediately upon request.

India Office : QRO Certification LLP  
142, 2<sup>nd</sup> Floor, Avtar Enclave, Near Paschim Vihar West Metro Station, Delhi-110063, (INDIA)  
Website : [www.qrocrt.org](http://www.qrocrt.org), E-mail : [info@qrocrt.org](mailto:info@qrocrt.org)



## Certificate of Registration

This is to certify that

### ECOSCIENCE CONSULTANCY

LAKSHMI VIHAR COLONY, BAHADRABAD, HARIDWAR  
UTTARAKHAND STATE -249402, INDIA.

has been independently assessed by QRO  
and is compliant with the requirement of:

**ISO 45001:2018**

**Occupational Health and Safety Management System**

For the following scope of activities:

**PROVIDING EXPERT SOLUTION IN THE FIELD OF ENVIRONMENT MONITORING, WASTEWATER MANAGEMENT (ETP/STP INSTALLATION AND MAINTENANCE), THIRD PARTY AUDITS (FOR WASTE MANAGEMENT), GREEN AUDITS, ENERGY AUDITS, CARBON FOOTPRINT.**

Date of Certification: 14th January 2025

2<sup>nd</sup> Surveillance Audit Due: 13th January 2027

1<sup>st</sup> Surveillance Audit Due: 13th January 2026

Certificate Expiry: 13th January 2028

**Certificate Number: 305025011410HS**



A handwritten signature in blue ink, appearing to read 'Chirantan ..'.

Head of Certification

Validity of this certificate is subject to annual surveillance audits to be done successfully on or before 365 days from date of the audit.  
(In case surveillance audit is not allowed to be conducted; this certificate shall be suspended / withdrawn).

The Validity of this certificate can be verified at [www.qrocert.org](http://www.qrocert.org)  
This certificate of registration remains the property of QRO Certification LLP, and shall be returned immediately upon request.

India Office : QRO Certification LLP  
142, 11nd Floor, Avtar Enclave, Near Paschim Vihar West Metro Station, Delhi-110063, (INDIA)  
Website : [www.qrocert.org](http://www.qrocert.org), E-mail : [info@qrocert.org](mailto:info@qrocert.org)



## Certificate of Compliance

This is to certify that the  
Conformity Assessment Certification  
of  
**ECOSCIENCE CONSULTANCY**

at

LAKSHMI VIHAR COLONY, BAHADRBAD, HARIDWAR  
UTTARAKHAND STATE -249402, INDIA.

has been independently assessed and is  
compliant with the requirements of:

**ISO/IEC 17020:2012**

For the following scope of activities:

PROVIDING EXPERT SOLUTION IN THE FIELD OF ENVIRONMENT MONITORING, WASTEWATER  
MANAGEMENT (ETP/STP INSTALLATION AND MAINTENANCE), THIRD PARTY AUDITS  
(FOR WASTE MANAGEMENT), GREEN AUDITS, ENERGY AUDITS, CARBON FOOTPRINT.

**Certificate Number: UQ - 2025011405**

Validity of this certificate can be verified at [www.ukcertifications.org.uk/verify](http://www.ukcertifications.org.uk/verify)

|                            |                   |
|----------------------------|-------------------|
| Date of Certification      | 14th January 2025 |
| 1st Surveillance Audit Due | 13th January 2026 |
| 2nd Surveillance Audit Due | 13th January 2027 |
| Certificate Expiry         | 13th January 2028 |

A handwritten signature in blue ink that reads 'Daniel..'.  
Authorised Signatory



This certificate is the property of UK Certification & Inspection Limited and shall be returned immediately on request.  
71-75 Shelton Street, Covent Garden, London, WC2H 9JQ, United Kingdom  
Website: [www.ukcertifications.org.uk](http://www.ukcertifications.org.uk), email: [info@ukcertifications.org.uk](mailto:info@ukcertifications.org.uk)  
Company No. 11847851



## Certificate of Registration

This is to certify that

### ECOSCIENCE CONSULTANCY

LAKSHMI VIHAR COLONY, BAHADARBAD, HARIDWAR  
UTTARAKHAND STATE -249402, INDIA.

has been independently assessed by QRO  
and is compliant with the requirement of:

**ISO 50001:2018**

### Energy Management Systems

For the following scope of activities:

**PROVIDING EXPERT SOLUTION IN THE FIELD OF ENVIRONMENT MONITORING, WASTEWATER MANAGEMENT (ETP/STP INSTALLATION AND MAINTENANCE), THIRD PARTY AUDITS (FOR WASTE MANAGEMENT), GREEN AUDITS, ENERGY AUDITS, CARBON FOOTPRINT.**

Date of Certification: 14th January 2025

2<sup>nd</sup> Surveillance Audit Due: 13th January 2027

1<sup>st</sup> Surveillance Audit Due: 13th January 2026

Certificate Expiry: 13th January 2028

**Certificate Number: 305025011411EN**



A handwritten signature in blue ink, appearing to read 'Chauhan ..'.

Head of Certification

Validity of this certificate is subject to annual surveillance audits to be done successfully on or before 365 days from date of the audit.  
(In case surveillance audit is not allowed to be conducted; this certificate shall be suspended / withdrawn).

The Validity of this certificate can be verified at [www.qrocert.org](http://www.qrocert.org)

This certificate of registration remains the property of QRO Certification LLP, and shall be returned immediately upon request.

India Office : QRO Certification LLP  
142, 11nd Floor, Avatar Enclave, Near Paschim Vihar West Metro Station, Delhi-110063, (INDIA)  
Website : [www.qrocert.org](http://www.qrocert.org), E-mail : [info@qrocert.org](mailto:info@qrocert.org)

**ANNEXURE-3: ENERGY EFFICIENT EQUIPMENT SUPPLIERS**

| <b>Product/ Equipment</b>        | <b>Name</b>                                                             | <b>Website</b>                                                             |
|----------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Capacitors and APFC Panels       | Standard Capacitors                                                     | <a href="http://www.standardcapacitors.com">www.standardcapacitors.com</a> |
| Capacitors and APFC Panels       | Ashish Consultant                                                       | <a href="http://www.ashishconsultant.com">www.ashishconsultant.com</a>     |
| Capacitors/ Switch Reactors etc. | Switch Gears/ Shreem Electric Ltd                                       | <a href="http://www.shreemelectric.com">www.shreemelectric.com</a>         |
| Lighting Systems                 | Asian Electronics Ltd.                                                  | <a href="http://wwwaelgroup.com">wwwaelgroup.com</a>                       |
| Lighting Systems                 | Philips India Ltd                                                       | <a href="http://www.india.philips.com">www.india.philips.com</a>           |
| Lighting Systems                 | OSRAM India Ltd.                                                        | <a href="http://www.osram.in">www.osram.in</a>                             |
| Lighting Systems                 | Wipro Lighting                                                          | <a href="http://www.wiprolighting.com">www.wiprolighting.com</a>           |
| Solar Products                   | Synergy Solar (P) Ltd                                                   | <a href="http://www.synergysolar.net">www.synergysolar.net</a>             |
| Solar Products                   | Inter Solar Systems (P) Limited                                         | <a href="http://www.intersolarsystems.com">www.intersolarsystems.com</a>   |
| Energy Efficient Pumps           | Danfoss Industries Pvt. Ltd.                                            | <a href="http://www.danfoss.com">www.danfoss.com</a>                       |
| Energy Efficient Pumps           | Mather & Platt Pumps Ltd.                                               | <a href="http://www.matherplatt.com">www.matherplatt.com</a>               |
| Energy Efficient Pumps           | Xylem Water Solutions India Pvt. Ltd.<br>(Distributor of Lowara, Italy) | <a href="http://www.lowara.com">www.lowara.com</a>                         |

**Note: -The suppliers mentioned above are not the only ones or the best in the market. The management may contact other suppliers for competitive rates/ specifications.**

#### **ANNEXURE-4: RECOMMENDED LUX LEVELS**

##### **➤ Entrance**

|                                        |       |
|----------------------------------------|-------|
| Entrance halls, lobbies, waiting rooms | = 200 |
| Enquiry Desks                          | = 500 |
| Gate Houses                            | = 200 |

##### **➤ Circulation Areas**

|                                |       |
|--------------------------------|-------|
| Lifts                          | = 100 |
| Corridors, passageways, stairs | = 100 |
| Escalators, revelators         | = 150 |

##### **➤ Staff Rooms**

|         |       |
|---------|-------|
| Offices | = 300 |
|---------|-------|

|                                                                 |       |
|-----------------------------------------------------------------|-------|
| Changing, locker and cleaners' room,<br>Cloak rooms, lavatories | = 100 |
|-----------------------------------------------------------------|-------|

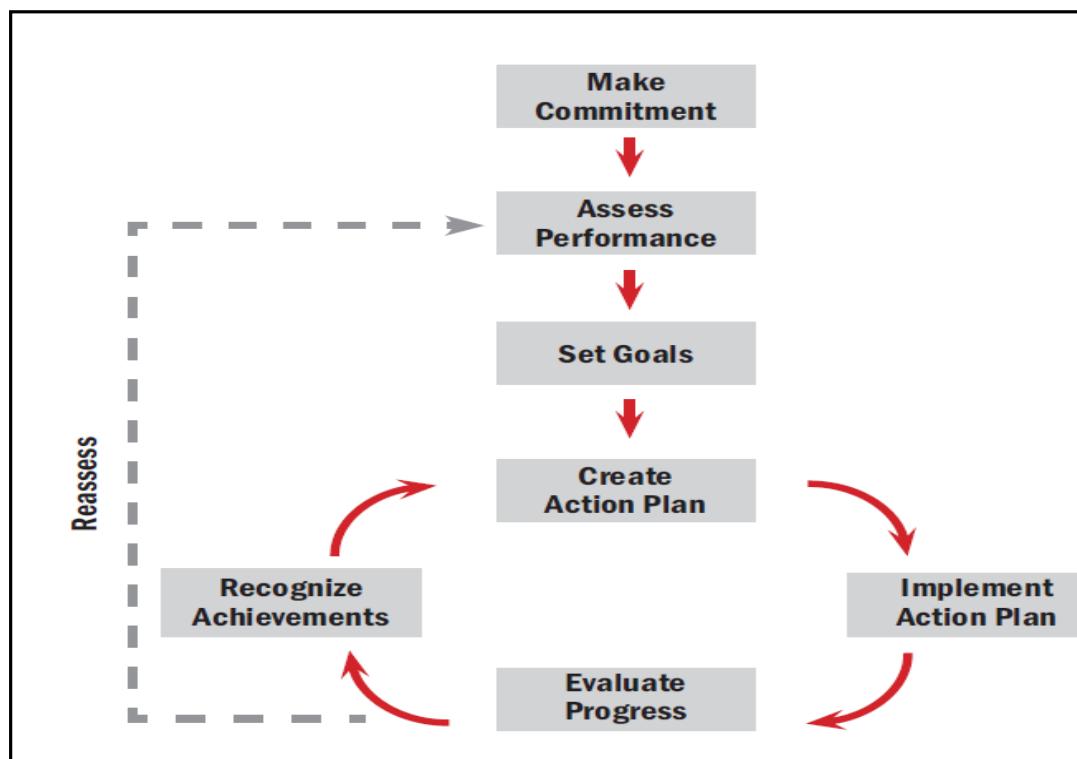
|            |       |
|------------|-------|
| Rest Rooms | = 150 |
|------------|-------|

##### **➤ Staff Restaurants**

|                                                   |       |
|---------------------------------------------------|-------|
| Canteens, Cafeterias, dining rooms, mess<br>rooms | = 200 |
|---------------------------------------------------|-------|

##### **➤ Communication**

|                            |       |
|----------------------------|-------|
| Switch board rooms         | = 300 |
| Telephone, apparatus rooms | = 150 |
| Telex room, post rooms     | = 500 |
| Reprographic room          | = 300 |


##### **➤ Education**

|                   |                         |
|-------------------|-------------------------|
| Assembly Halls    | = 200-500 (average 300) |
| Teaching Places   | = 200-500 (average 300) |
| Lecture Theatres  | = 200-500 (average 300) |
| Seminar Rooms     | = 300-750 (average 500) |
| Art Rooms         | = 300-750 (average 500) |
| Needle Work Rooms | = 300-750 (average 500) |
| Laboratories      | = 300-750 (average 500) |
| Libraries         | = 200-500 (average 300) |
| Music Rooms       | = 200-500 (average 300) |
| Sports Halls      | = 200-500 (average 300) |
| Workshops         | = 200-500 (average 300) |

## **ANNEXURE-5: ENERGY MONITORING AND ACCOUNTING**

**Present Energy Monitoring & Accounting System:** There is a proper metering system for the purchased power. However, the data related to the power generated using DG sets is not being monitored monthly. There are no prescribed formats available to maintain such records. Because of this, there is no periodic performance analysis of the energy consumption in the building.

## Recommended Energy Monitoring & Accounting System



Energy Management should be seen as a continuous process. Strategies should be reviewed annually and revised as necessary. The key activities suggested have been outlined below:

- Clear **accountability for energy consumption** needs to be established, appropriate financial and staffing resources must be allocated and reporting procedures initiated. An energy management programme requires commitment from the whole organization to be successful.
- A **record of Energy consumption** both Electrical must be kept and monitored on a regular basis. For this, sub meter on the DG set is required. This will enable an overview of energy use and its related costs, as well as facilitating the identification of savings that might otherwise not be detected. The system needs to record both historical and ongoing energy use, as well as cost information from billing data, and capable of

producing summary reports on a regular basis. This information will provide the means by which trends can be analyzed and reviewed for corrective measures.

- Some facts and figures related with energy may be displayed on boards or **posters in the premises**, to create awareness among the workmen and staff. A key ingredient to the success of an energy management program is maintaining a high level of awareness among staff. This can be achieved in a number of ways, including formal training, newsletters, posters and publications. It is important to communicate program plans and case studies that demonstrate savings, and to report results at least at 12-month intervals. As an incentive, new ideas and implementation of energy saving point must be recognized and awarded.
- The findings and **implementation status of Energy audits** should be reviewed periodically/annually for further action plan.

*Table 25: Format for Maintaining a Monthly Record of the Purchased Power Consumption*

| Particulars                   | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Actual Demand (KVA)           |     |     |     |     |     |     |     |     |     |     |     |     |
| KWH Consumption               |     |     |     |     |     |     |     |     |     |     |     |     |
| KVAh Consumption              |     |     |     |     |     |     |     |     |     |     |     |     |
| Operating Power factor        |     |     |     |     |     |     |     |     |     |     |     |     |
| Fixed Demand Charges (Rs)     |     |     |     |     |     |     |     |     |     |     |     |     |
| Energy Charges (Rs)           |     |     |     |     |     |     |     |     |     |     |     |     |
| Penalty / Rebate, if any (Rs) |     |     |     |     |     |     |     |     |     |     |     |     |
| Other Charges (Rs)            |     |     |     |     |     |     |     |     |     |     |     |     |
| Total Amount Payable (Rs)     |     |     |     |     |     |     |     |     |     |     |     |     |

-: End of Report: -